Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data

Braun, R.T. ; Tornow, W. ; Howell, C.R. ; et al.
Phys.Lett.B 660 (2008) 161-166, 2008.
Inspire Record 778429 DOI 10.17182/hepdata.50912

We present the most accurate and complete data set for the analyzing power Ay(theta) in neutron-proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En = 12.0 MeV deviate considerably from the predictions of nucleon-nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion-nucleon coupling constant is discussed in a model study.

1 data table

The measured analysing power at 12 MeV. Errors contain statistics and systematics added in quadrature.


Measurements of polarized-neutron-polarized-proton scattering: Implications for the triton binding energy

Wilburn, W.S. ; Gould, C.R. ; Haase, D.G. ; et al.
Phys.Rev.Lett. 71 (1993) 1982-1985, 1993.
Inspire Record 370854 DOI 10.17182/hepdata.19731

Measurements have been made of ΔσT for polarized neutrons incident on a polarized-proton target from 3.65 to 11.60 MeV. In the energy range near 10 MeV, ΔσT is very sensitive to the nucleon-nucleon tensor interaction. Comparison of the data to potential-model predictions indicate that the tensor interaction is weak, resulting in values of the 3S1−3D1 mixing parameter ε1 which are smaller than predicted by any nucleon-nucleon potential model. A smaller tensor force will bring the predictions of local potential models for the triton binding energy into closer agreement with the experimental value.

1 data table

The measured cross section is the total cross section with the spins antiparallel minus the total cross section with the spins parallel.