A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
The NA 32 experiment at the CERN SPS has collected 38 million hadronic interactions with incident 200 GeV/c π−,K− andp beam. Using a segmented silicon active target and a telescope of high resolution silicon microstrip counters we have selected fully reconstructedD0→K−π+,D0→K−π+π+π−,D+→K−π+π+,Ds+→K−K+π+π+ and charge conjugate decays. The integrated cross-sections forDo,D+D*+ andDs+ meson production and the dependence of the cross-section on longitudinal and transverse momentum of theD are presented.
No description provided.
No description provided.
No description provided.
We present measured hadron energy distributions for the reactions ν(ν¯)+N→ν(ν¯)+hadrons at high energy, as well as for the similar charged-current interactions. Insofar as possible, the determination of these distributions avoids any a priori assumptions about either the neutral-current or the charged-current interactions. We further analyze the neutral-current distributions within the framework of specific models, particularly the scaling model, to obtain a positive-helicity component P=0.36±0.10, which lies between pure V−A and pure V or A, and a coupling strength of g0=0.31±0.03 relative to the charged-current interaction. These coupling parameters agree well with the predictions of the Weinberg-Salam model with sin2θW=0.33±0.07.
No description provided.
No description provided.
Hadronic charm production was investigated with a two-arm magnetic spectrometer. The experiment was triggered on muons from the semileptonic decay of charm particles in one arm while reconstructing the mass of the associatively produced partners in the other arm. An excess of 153±46 combinations above background for the neutral D→Kπ mode was observed. This corresponds to a model-dependent DD¯ production cross section of 41±12+15−11 μb per nucleon, where the first uncertainty is statistical and the second is systematic.
Cross sections based on (1-ABS(XF))**3 production model.
Cross section based on (1-ABS(XF))**3 production model.
The inclusive cross section for charged-D* production by 205-GeV/c π− mesons incident on a beryllium target was measured with a two-arm spectrometer triggered by prompt muons. Using the mass-difference technique often employed in D* studies, a signal of 31±11 charged D*’s was isolated; it includes contributions from both the D*+ and D*− charged modes in correlation with triggering muons of the proper charge. This corresponds to an inclusive charged-D* production cross section of 220±77−57+77 μb per Be nucleus or 24±9−6+9 μb per nucleon when the cross section is scaled linearly with atomic mass number. The first error is statistical and the second is systematic.
No description provided.
The hadronic production of charmed states was studied in a two-arm spectrometer using a 205-GeV/c negative-pion beam incident upon a beryllium target. One arm, filled with dense absorber, triggered the detectors upon the passage of a muon with a moderate transverse momentum and a total momentum of at least 4 GeV/c. The other arm was an open-geometry magnetic spectrometer which had both neutral- and charged-particle identification capabilities. The apparatus, the data, and an invariant-mass-plot search for evidence of charmed-meson production through several charged-particle decay modes are described. The Kπ, Kππ, and Kπππ mass plots fail to reveal significant D-meson signals. Based upon the Kπ mass plots, the 95%-confidence upper limit on the DD¯ production cross section is found to be less than 51 μb per nucleon for the production models tested. A search for evidence of charged-D* production yields 30±16 combinations above background in association with the expected trigger muon charge. Interpreted as a D* signal, this excess corresponds to a model-dependent inclusive DD¯ production cross section of 34±18−9+14 μb per nucleon. Model-dependent upper limits on the ratio of the F to D cross sections are also presented.
Uncorrelated model for charmed mesons production.
'Correlated' model for pair of charmed mesons production.
Uncorrelated model for D/S+- mesons production.
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Searches for scalar leptoquarks pair-produced in proton-proton collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb$^{-1}$ is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first- and second-generation leptoquarks, respectively, as postulated in the minimal Buchm\"uller-R\"uckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the $Z\rightarrow ee$, $Z\rightarrow\mu\mu$ and $t\bar{t}$ processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the $Z\rightarrow\ell\ell$ measurements in observables sensitive to jet energies disagree with the data.
Inclusive cross-section and uncertainty from each source, for the dominant process in the each measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.
Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta R(b,b)$, as a function of $\Delta R(b,b)$ - the angle in $\eta$ and $\phi$ between the two b-tagged jets.
Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta\theta_\text{gpp,gbb}/\pi$, the angle between production (gpp) and decay (gbb) planes ($\Delta\theta_\text{gpp,gbb}$).
Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/dz(p_\text{T})$, as a function of $z(p_\text{T})=p_\text{T,2}/(p_\text{T,1}+p_\text{T,2})$.