The path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb$^{-1}$. For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity ($\eta$) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients $v_n$, $n = $ 2-4 of these azimuthal distributions. The dijet $v_n$ values are extracted from long-range (1.5 $\lt$$\vert\Delta\eta\vert$$\lt$ 2.5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet $v_2$ values are observed which increase from central to more peripheral events, while the $v_3$ and $v_4$ values are consistent with zero within experimental uncertainties.
The dijet $v_{n}$ data points factorized using different associated hadron pT bins for 0-10 % centrality bin. The data points are corrected for the jet reconstruction bias effects.
The dijet $v_{n}$ data points factorized using different associated hadron pT bins for 10-30 % centrality bin. The data points are corrected for the jet reconstruction bias effects.
The dijet $v_{n}$ data points factorized using different associated hadron pT bins for 30-50 % centrality bin. The data points are corrected for the jet reconstruction bias effects.
The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.
The elliptic flow $v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{6\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The elliptic flow $v_2\{8\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.
The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, corresponding to an integrated luminosity of 0.38 nb$^{-1}$, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet momenta is found to be positive, and rising, as the dijet momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.
The unfolded 1/${N_{\mathrm{events}}} dN/d\Phi$ distribution
The unfolded $<\cos(2\Phi)>$ distribution as a function of $Q_{\mathrm{T}}$
The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.
Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.
Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.
Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.
The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Systematic uncertainties on $\lambda$ and $R$ for the exponential fit of the two-particle double-ratio correlation function $R_{2}(Q)$ in the full kinematic region at $\sqrt{s} = 0.9$ and $7\ TeV$ for minimum-bias and high-multiplicity (HM) events, $n_{ch} \ge 2$ and $n_{ch} \ge 150$, respectively.
Results of fitting the multiplicity, $n_{ch}$, dependence of the BEC parameters $R$ and $\lambda$ with different functional forms for $\sqrt{s} = 0.9$ and $7\ TeV$. The $n_{ch}$ fit of $R(n_{ch})$ is applied to $7\ TeV$ minimum-bias events at $n_{ch} \le 55$ and to $0.9\ TeV$ minimum-bias events. The constant fit of $R(n_{ch} )$ is applied to $7\ TeV$ minimum-bias events for $n_{ch} > 55$ and to $7\ TeV$ high-multiplicity events. The exponential fit of $\lambda(n_{ch})$ is applied to $7\ TeV$ minimum-bias and high-multiplicity events.The error represent the quadratic sum of the statistical and systematic uncertainties.
Results of fitting the transverse momentum of the pair, $k_{T}$, dependence of the BEC parameters $R$ and $\lambda$ with the exponential fitting function for $\sqrt{s} = 0.9$ and $7\ TeV$. The error represent the quadratic sum of the statistical and systematic uncertainties.
Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.
The $R_{\mathrm{coll}}$ and $T_{p\mathrm{A}}$ values and their uncertainties in each centrality bin.
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).
Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).
Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.
The $\langle T_{\mathrm{AA}} \rangle $ and $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties in each centrality bin.
No description provided.
No description provided.
Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.
The distributions of $N_{ch}^{rec}$ for MB and MB+HMT after applying an event-by-event weight, errors are statistical.
The distributions of $E_{T}^{Pb}$ [GeV] for MB and MB+HMT after applying an event-by-event weight, errors are statistical.
Per-trigger yield in 2D, $Y$($\Delta\phi$,$\Delta\eta$), for events with $E_{T}^{Pb} <$ 10 GeV and $N_{ch}^{rec} \geq$ 200 and recoil-subtracted per-trigger yield, $Y^{sub}$($\Delta\phi$,$\Delta\eta$) for events with $N_{ch}^{rec} \geq$ 200. Errors are statistical.
A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.
Ratio of W+ and W- candidates in $W\rightarrow \ell \nu_{\ell}$ as a function of the mean number of participants $N_{part}$.
$W^\pm$ boson production yield per binary collision as a function of the mean number of participants $N_{part}$.
Differential production yield per binary collision for $W^{+}$ bosons as a function of $|\eta_\ell|$.