We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction incorporates the constraint from the 1mu1p sample
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction does not incorporate the constraint from the 1mu1p sample
NuE background fractional covariance matrix after the 1mu1p constraint from arXiv:2110.14080
The STAR Collaboration presents measurements of the semi-inclusive distribution of charged-particle jets recoiling from energetic direct-photon ($\gamma_{\rm dir}$) and neutral-pion ($\pi^{0}$) triggers in p+p and central Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ GeV over a broad kinematic range, for jet resolution parameters $R$=0.2 and 0.5. Medium-induced jet yield suppression is observed to be larger for $R$=0.2 than for 0.5, reflecting the angular range of jet energy redistribution due to quenching. The predictions of model calculations incorporating jet quenching are not fully consistent with the observations. These results provide new insight into the physical origins of jet quenching.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.5 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of pi^{0}+jet with E_{T,trig}= 11-15 GeV.
We report the differential yields at mid-rapidity of the Breit-Wheeler process ($\gamma\gamma\rightarrow e^{+}e^{-}$) in peripheral Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}} = $ 54.4 GeV and 200 GeV with the STAR experiment at RHIC, as a function of energy $\sqrt{s_{_{\rm{NN}}}}$, $e^{+}e^{-}$ transverse momentum $p_{\rm T}$, $p_{\rm T}^{2}$, invariant mass $M_{ee}$ and azimuthal angle. In the invariant mass range of 0.4 $<$$M_{ee}$$<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_{\rm T}$$ < $0.15 GeV/$c$), the yields increase while the pair $\sqrt{\langle p_{\rm T}^{2} \rangle}$ decreases with increasing $\sqrt{s_{_{\rm{NN}}}}$, a feature is correctly predicted by the QED calculation. The energy dependencies of the measured quantities are sensitive to the nuclear form factor, infrared divergence and photon polarization. The data are compiled and used to extract the charge radius of the Au nucleus.
'54.4 GeV, Centrality: 40-60%'
'54.4 GeV, Centrality: 60-80%'
'54.4 GeV, Centrality: 80-100%'
A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.
Missing ET distribution.
Signal Point Information: (1) Number of Monte Carlo events generated (2) Total signal cross section (pb) (3) Signal acceptance (4) Relative uncertainty on acceptance (5) CLs expected (6) CLs observed.
The observed limit contour in the GLUINO-NEUTRALINO plane.
A search for doubly-charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high-pT leptons with the same electric charge (ee, emu, mumu) are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross section times branching ratio for pair production of doubly-charged Higgs bosons. The masses of doubly-charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for ee, emu, mumu, respectively.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to left-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to right-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.
Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 25 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.
Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 40 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.
Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 60 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at sqrt(s)=7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb-1 are used. Good agreement is observed between the data and the Standard Model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
95% CL observed and expected upper limits on M_D as a function of the number of extra-dimensions considering LO signal cross sections. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
95% CL observed and expected upper limits on M_D as a function of the number of extra-dimensions considering NLO signal cross sections. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
95% CL observed and expected upper limits on M_* for spin-independent (D1) WIMP models. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.
Missing transverse energy after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Missing transverse energy after requiring one muon with pT>20 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Transverse mass after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.
Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.