The experimental results are presented for ratios of ν-meson inclusive differential cross sections in 10.5 GeV/ c π + p, π + D and π + A collisions, R D/p =(d σ /d x F )( π + D → η X)/ (d σ /d x F ) π + p→ η X), R A =(d σ /d x F )( π + D→ η X) in the beam fragmentation region. The results are based on the statistics of ≈ 5 × 10 4 detected η → 2 γ decays. It is shown that the power α in the parametrisation R A ≈ A α ( xf ) does not change significantly with x F and its mean value is 0.50±0.02. The lower limit is obtained for the effective coefficient with string tension in the colour string model, κ ⩾ 3 GeV/fm. The observed growth of R A with x F can be explained by an assumption of a neutron halo with the factor H ≈ 4 in the nuclei.
No description provided.
No description provided.
No description provided.
Total inclusive cross sections for rho0, ω and f (1270) meson production and the corresponding average multiplicities < n(rho0) > = 0.072+-0.019, < n(ω) > = 0.033+-0.022, < n(f) > = 0 01 +-0.010 have been measured in π-C interactions at 5 GeV/c. It is shown that approximately 8 percent of secondary π- mesons are produced from the meson resonance decay. For the reactions with the production of rho0 mesons the dependence of the inclusive differential cross sections on the rapidity and squared transverse momentum is analysed
No description provided.
None
No description provided.
None
No description provided.
None
No description provided.
'ASSUMPTION'.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one pseudoscalar decays into a $b$-quark pair and the other decays into a $\tau$-lepton pair, in the mass range $12\leq m_{a}\leq 60$ GeV. The analysis uses $pp$ collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 ${fb}^{-1}$. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross-section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into $b\bar{b}\tau^+\tau^-$, $\mathcal{B}(H \rightarrow aa \rightarrow b\bar{b}\tau^+\tau^-)$, between 2.2% and 3.9% depending on the pseudoscalar mass.
Visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and distribution for signal and the expected background. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
Sum of the transverse mass $\Sigma m_T$ distributions for signal and the expected background. Events with high $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and high $\Sigma m_T$ are included in the $t\bar{t}$ region. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.