Showing 10 of 157 results
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Pre-fit data and background (reweighted $2b$) predictions for each $4b$ SR $E_\text{T}^\text{miss}$ and $m_\text{eff}$ bin of the low-mass channel for the 2016 data-taking period. The bottom panel shows the significance of any differences between the observed $4b$ data and the background prediction. The $1\sigma$ and $2\sigma$ bands are shown in green and yellow, respectively. All systematics are included except the background normalization, which is 2.3%.
Pre-fit data and background (reweighted $2b$) predictions for each $4b$ SR $E_\text{T}^\text{miss}$ and $m_\text{eff}$ bin of the low-mass channel for the 2017 data-taking period. The bottom panel shows the significance of any differences between the observed $4b$ data and the background prediction. The $1\sigma$ and $2\sigma$ bands are shown in green and yellow, respectively. All systematics are included except the background normalization, which is 3.7%.
Pre-fit data and background (reweighted $2b$) predictions for each $4b$ SR $E_\text{T}^\text{miss}$ and $m_\text{eff}$ bin of the low-mass channel for the 2018 data-taking period. The bottom panel shows the significance of any differences between the observed $4b$ data and the background prediction. The $1\sigma$ and $2\sigma$ bands are shown in green and yellow, respectively. All systematics are included except the background normalization, which is 1.8%.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the high-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the high-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Results of the background-only fit in the low-mass channel discovery region SR_LM_150. Both pre-fit and post-fit values are shown.
Results of the background-only fit in the low-mass channel discovery region SR_LM_300. Both pre-fit and post-fit values are shown.
The experimental efficiency of the low-mass channel for the exclusion and discovery signal regions as a function of higgsino mass. The experimental efficiency is defined as the number of events passing the detector-level event selections divided by the number of events passing the event selections for a perfect detector. The denominator is obtained by implementing particle-level event selections that emulate the detector-level selections. This treats the lack of availability of $b$-jet triggers as an inefficiency.
The particle-level acceptance for the low-mass exclusion and discovery signal regions, shown as a function of higgsino mass. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons.
The experimental efficiency of the high-mass channel discovery regions as a function of higgsino mass. For each higgsino mass, the efficiency is shown for the SR-1 region corresponding to the mass. For masses above 1100 GeV, SR-1-1100 is used. The experimental efficiency is defined as the number of events passing the detector-level event selections divided by the number of events passing the event selections for a perfect detector. The denominator is obtained by implementing particle-level event selections that emulate the detector-level selections. The efficiency calculation considers only those signal events where both higgsinos decay to Higgs bosons.
The particle-level acceptance for the high-mass signal regions, shown as a function of higgsino mass. For each higgsino mass, the acceptance is shown for the SR-1 region corresponding to the mass. For masses above 1100 GeV, SR-1-1100 is used. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons.
Cutflow for the low-mass channel for a representative 130 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 150 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 200 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 250 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 300 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 400 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 500 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 600 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 700 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 800 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 900 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 1000 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 1100 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 200 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 250 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 300 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 400 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 500 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 600 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 700 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 800 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 900 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1000 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1100 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1200 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1300 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1400 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1500 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 1.5, 1.0, and 0.75 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 1.5, 1.0, and 0.75 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 0.5, 0.35, and 0.25 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 0.5, 0.35, and 0.25 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the absolute differential cross-section at particle level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at particle level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at particle level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute normalized cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the absolute differential cross-section at parton level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at parton level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at parton level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}| $normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.
Longitudinal profile for 50 GeV < pT < 70 GeV.
Transverse profile for 50 GeV < pT < 70 GeV.
Longitudinal profile for 70 GeV < pT < 100 GeV.
Transverse profile for 70 GeV < pT < 100 GeV.
Longitudinal profile for pT > 100 GeV.
Transverse profile for pT > 100 GeV.
Average longitudinal profile
Transverse profile for pT > 100 GeV.
This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.
Post-fit number of background events in all SR bins (after applying the BDT cuts) that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mmumu for ma ≤ 45 GeV (ma > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.
Post-fit number of background events in all SR bins without applying the BDT cuts that are tested for the presence of signal. The bins are 2 GeV (3 GeV) wide in mµµ for $m_a$ ≤ 45 GeV ($m_a$ > 45 GeV). Events in neighbouring bins partially overlap. Discontinuities in the background predictions appear when the BDT discriminant used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range.
Probability that the observed spectrum is compatible with the background-only hypothesis. The local $p_0$-values are quantified in standard deviations $\sigma$.
Upper limits on $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ at 95% CL including the BDT cut as a function of the signal mass.
Upper limits on $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$ at 95% CL without the BDT cut as a function of the signal mass.
This paper presents a measurement of the electroweak production of two jets in association with a $Z\gamma$ pair, with the $Z$ boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $Z\gamma$ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. An observed (expected) upper limit of 0.37 ($0.34^{+0.15}_{-0.10}$) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ($0.017^{+0.007}_{-0.005}$), assuming the Standard Model production cross-section for a 125 GeV Higgs boson.
Post-fit results for all $m_\text{jj}$ SR and CR bins in the EW $Z \gamma + \text{jets}$ cross-section measurement with the $\mu_{Z \gamma_\text{EW}}$ signal normalization floating. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit results for all DNN SR and CR bins in the search for $H \to \text{inv.}$ with the $\mathcal{B}_\text{inv}$ signal normalization set to zero. For the $Z_\text{Rev.Cen.}^\gamma$ CR, the third bin contains all events with DNN output score values of 0.6-1.0. The $H \to \text{inv.}$ signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. The post-fit uncertainties include statistical, experimental, and theoretical contributions.
Post-fit results for the ten [$m_\text{jj}$, $m_\text{T}$] bins constituting the SR and CRs defined for the dark photon search with the $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ signal is shown for two different mass hypotheses (125 GeV, 500 GeV) and scaled to a branching ratio of 2% and 1%, respectively. The post-fit uncertainties include statistical, experimental, and theoretical contributions.
Post-fit $m_\text{T}(\gamma, E_\text{T}^\text{miss})$ distribution in the inclusive signal region for the dark-photon search with the 125 GeV mass $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ decay signal is shown for two different mass hypotheses, 125 GeV and 500 GeV, and scaled to a $\mathcal{B}(H \to \gamma \gamma_\text{d})$ of 2% and 1%, respectively. Events with $m_\text{T}(\gamma, E_\text{T}^\text{miss})$ larger than the rightmost bin boundary are added to that bin.
The 95% CL upper limit on the Higgs boson production cross-section times branching ratio to $\gamma \gamma_\text{d}$ is shown for different VBF-produced scalar-mediator-mass hypotheses in the NWA. The theoretically predicted cross-section of a Higgs boson produced via VBF and with the $\mathcal{B}(H \to \gamma \gamma_\text{d}) =$ 5% is superimposed on the $\pm 1\sigma$ and $\pm 2\sigma$ NNLO QCD + NLO EW uncertainty band of the expected production cross-section limit.
Post-fit $m_\text{jj}$ distribution in the inclusive signal region. The Higgs boson invisible decay signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. Events with $m_\text{jj}$ larger than the rightmost bin boundary are added to that bin.
Post-fit $m_\text{jj}$ distribution in the one-lepton control region $W_{\ell \nu}^\gamma$ CR. Events with $m_\text{jj}$ larger than the rightmost bin boundary are added to that bin.
Post-fit $m_\text{T}$ distribution in the one lepton control region. Events with $m_\text{T}$ larger than the rightmost bin boundary are added to that bin.
Post-fit photon centrality distribution in the zero lepton signal plus control region with the $\mathcal{B}_\text{inv}$ signal normalization set to zero in the fit.
Post-fit photon $E_\text{T}$ distribution in the zero lepton signal region with the $\mathcal{B}_\text{inv}$ signal normalization set to zero in the fit.
Post-fit photon centrality distribution in the zero lepton signal plus control region resulting from the fit to the $m_\text{jj}$ distribution for EW $Z \gamma + \text{jets}$. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit photon $E_\text{T}$ distribution in the zero lepton signal region resulting from the fit to the $m_\text{jj}$ distribution for EW $Z \gamma + \text{jets}$. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit DNN output score distribution in the one lepton control region.
Yields for the EW $Z \gamma + \text{jets}$ process are shown after each selection along with relative and absolute signal acceptance efficiencies.
Yields for the 125 GeV Higgs boson with $\mathcal{B}_\text{inv.} =$ 1 signal produced by the vector boson fusion process in association with a final state photon are shown after each selection along with relative and absolute signal acceptance efficiencies.
Yields for the 125 GeV Higgs boson with $\mathcal{B}(H \to \gamma \gamma_\text{d}) =$ 1 signal produced by the vector boson fusion process are shown after each selection along with relative and absolute signal acceptance efficiencies.
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.
Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in the signal region, shown together with the parameterized background model (labelled "Bkg Model"). For reference, the MC prediction for the SM background is also shown (labelled "SM MC"). The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The signal region is defined to have dijet invariant mass > 20 GeV. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Unweighted and weighted number of events after each stage of selection for the NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}) = (45,10,80)$ GeV and the Z boson decaying to $e^{+}e^{-}, \;\mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The weighted number of events corresponds to an integrated luminosity of $139 \;\mathrm{fb}^{-1}$. The "skimming selection" required either a single electron or muon with $p_{T} > 100\;$ GeV or a pair of electrons or muons each with $p_{T} > 20\;$ GeV. The preselection requirements include the trigger, absence of a bad jet or bad muon, and two leptons, where a lepton is either an electron or a muon.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 45$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 55$ GeV.
The fraction of $a$ boson decays matched to reconstructed displaced vertices passing all vertex selections in signal MC.
The extrapolated signal selection efficiency as a function of $c\tau_{a}$.
The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.
Observed 95% CL exclusion limit for the Zprime-2HDM model.
Expected 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Observed 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Observed 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Observed 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected and observed upper limits at 95% CL on cross-section for Zprime-2HDM model.
Expected and observed upper limits at 95% CL on cross-section for ggF producton in the 2HDM+a model.
Expected and observed upper limits at 95% CL on cross-section for bbA producton in the 2HDM+a model.
Model-independent upper limits on the visible cross-section $σ_{vis, $h(\bar{b})+DM} ≡ σ_{h+DM} \times B(h \to b\bar{b}) \times \mathcal{A} \times \epsilon$ in the different signal regions.
Distribution of Higgs boson candidate mass in 2b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=500-750 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET > 750 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET > 500 GeV.
Yields in 1-lepton control region.
Yields in 2-lepton control region.
MET distribution in 2b region of the 0-lepton channel.
MET distribution in 3b region of the 0-lepton channel.
Expected signal yields after certain selection cuts in 2b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=500-750 GeV.
Expected signal yields after certain selection cuts in 2b region with MET > 750 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 3b region with MET > 500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET>500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET > 500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET > 500 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.