Date

Measurement of the angular distribution of electrons from W ---> e neutrino decays observed in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 63 (2001) 072001, 2001.
Inspire Record 533572 DOI 10.17182/hepdata.41717

We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

1 data table

Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.


Cross-section for b jet production in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 85 (2000) 5068-5073, 2000.
Inspire Record 531669 DOI 10.17182/hepdata.42975

Bottom quark production in pbar-p collisions at sqrt(s)=1.8 TeV is studied with 5 inverse picobarns of data collected in 1995 by the DO detector at the Fermilab Tevatron Collider. The differential production cross section for b jets in the central rapidity region (|y(b)| < 1) as a function of jet transverse energy is extracted from a muon-tagged jet sample. Within experimental and theoretical uncertainties, DO results are found to be higher than, but compatible with, next-to-leading-order QCD predictions.

1 data table

No description provided.


Search for electroweak production of single top quarks in p anti-p collisions

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 63 (2000) 031101, 2000.
Inspire Record 531764 DOI 10.17182/hepdata.42976

We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb.

1 data table

No description provided.


The Ratio of jet cross-sections at S**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 2523-2528, 2001.
Inspire Record 532551 DOI 10.17182/hepdata.42973

The DO Collaboration has measured the inclusive jet cross section in proton-antiproton collisions at s**2 = 630 GeV. The results for pseudorapidities -0.5 to 0.5 are combined with our previous results at s**2 = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute normalization, the dependence of the ratio on jet transverse momentum is very similar for data and theory.

2 data tables

Inclusive jet cross section at 630 GeV.

Ratio of cross section at 630 and 1800 GeV (from PRL 82, 2451 (1999)).


Polarization observables in pi d (polarized) elastic scattering: Analyzing powers tau (22) and iT (11) in the forward hemisphere

Wessler, M. ; Boschitz, E. ; Brinkmoeller, B. ; et al.
Phys.Rev.C 51 (1995) 2575-2583, 1995.
Inspire Record 405002 DOI 10.17182/hepdata.25896

The vector analyzing power iT11 and the composite observable τ22=T22+T20/ √6 were measured at 10 incident pion energies between 100 and 294 MeV, in an angular range between 50° and 120°. Two different techniques were applied, the detection of the pion with a magnet spectrometer, and the πd coincidence method with scintillation counters. In the case of the first technique also two different target materials were used. Consistency among all data was obtained. The experimental data are compared to Faddeev calculations from one of us (H.G.). The discrepancies between theory and experiment are discussed, and an outlook for further research is given.

14 data tables

Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.

Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.

Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.

More…