Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.
The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.
The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.
The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.
The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of $^{208}$Pb nuclei in the ALICE experiment at the LHC are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron Zero Degree Calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral $^{208}$Pb-$^{208}$Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$~TeV. These 0p, 1p, 2p, and 3p cross sections are described by the RELDIS model, and according to this model, they are associated with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of $^{208}$Pb. The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes $^{206,205,204}$Tl.
Measured cross sections of the emission of a given number of protons k accompanied by at least one neutron i in UPC of Pb nuclei.
Measured cross sections of the emission of a given number of neutrons i accompanied by a single proton in UPC of Pb nuclei.
The ALICE Collaboration presents a new suite of jet substructure measurements in Pb-Pb and pp collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. These measurements provide access to the internal structure of jets via the momentum and angle of their constituents, probing how the quark-gluon plasma modifies jets, an effect known as jet quenching. Jet grooming additionally removes soft wide-angle radiation to enhance perturbative accuracy and reduce experimental uncertainties. We report the groomed and ungroomed jet mass $m_\mathrm{jet}$ and jet angularities $\lambda_\alpha^\kappa$ using $\kappa=1$ and $\alpha>0$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_\mathrm{T}$ algorithm with resolution parameter $R = 0.2$. A narrowing of the jet mass and angularity distributions in Pb-Pb collisions with respect to pp is observed and is enhanced for groomed results, confirming modification of the jet core. By using consistent jet definitions and kinematic cuts between the mass and angularities for the first time, previous inconsistencies in the interpretation of quenching measurements are resolved, rectifying a hurdle for understanding how jet quenching arises from first principles and highlighting the importance of a well-controlled baseline. These results are compared with a variety of theoretical models of jet quenching, providing constraints on jet energy-loss mechanisms in the quark-gluon plasma.
Jet angularity $\lambda_{\alpha}$ for $\alpha = 1$. $40<p_{\mathrm{T}}^{\mathrm{ch jet}}<60$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
Jet angularity $\lambda_{\alpha}$ for $\alpha = 1.5$. $40<p_{\mathrm{T}}^{\mathrm{ch jet}}<60$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
Jet angularity $\lambda_{\alpha}$ for $\alpha = 2$. $40<p_{\mathrm{T}}^{\mathrm{ch jet}}<60$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding", "random_mass") no correlation information is specified ($\pm$ is always used).
The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb-Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb-Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb-Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.
Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.2$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.
Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.4$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.
Ratio of isolated-photon cross section measured with $R=0.4$ over $R=0.2$ for Pb$-$Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$. Each column for each Pb$-$Pb collisions centrality class and for pp collisions. The last two columns for the NLO pQCD JETPHOX calculations for pp (PDF) and Pb$-$Pb (nPDF) collisions. Data statistical and systematic uncertainties are provided. The theory statiscal (Monte Carlo approach) and PDF uncertainties are provided.
In ultra-relativistic heavy ion collisions at the LHC, each nucleus acts a sources of high-energy real photons that can scatter off the opposing nucleus in ultra-peripheral photonuclear ($\gamma+A$) collisions. Hard scattering processes initiated by the photons in such collisions provide a novel method for probing nuclear parton distributions in a kinematic region not easily accessible to other measurements. ATLAS has measured production of dijet and multi-jet final states in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using a data set recorded in 2018 with an integrated luminosity of 1.72 $\text{nb}^{-1}$. Photonuclear final states are selected by requiring a rapidity gap in the photon direction; this selects events where one of the outgoing nuclei remains intact. Jets are reconstructed using the anti-$k_\text{t}$ algorithm with radius parameter, $R = 0.4$. Triple-differential cross-sections, unfolded for detector response, are measured and presented using two sets of kinematic variables. The first set consists of the total transverse momentum ($H_\text{T}$),rapidity, and mass of the jet system. The second set uses $H_\text{T}$ and particle-level nuclear and photon parton momentum fractions, $x_\text{A}$ and $z_{\gamma}$, respectively. The results are compared with leading-order (LO) perturbative QCD calculations of photonuclear jet production cross-sections, where all LO predictions using existing fits fall below the data in the shadowing region. More detailed theoretical comparisons will allow these results to strongly constrain nuclear parton distributions, and these data provide results from the LHC directly comparable to early physics results at the planned Electron-Ion Collider.
The fraction of photonuclear jet events passing the fiducial requirements in which the photon-emitting nucleus does not break up as a function of \zg. The systematic uncertainties are not symmetrized, and correlations in uncertainties are neglected for both the total systematic uncertainty and statistical uncertainty.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $y_\text{jets}$, and $m_\text{jets}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $x_\text{A}$, and $z_{\gamma}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
This Letter presents a search for highly ionizing magnetic monopoles in 262$~\mu$b$^{-1}$ of ultraperipheral Pb+Pb collision data at $\sqrt{s_{_\textrm{NN}}}=5.36$ TeV collected by the ATLAS detector at the LHC. A new methodology that exploits the properties of clusters of hits reconstructed in the innermost silicon detector layers is introduced to study highly ionizing particles in heavy-ion data. No significant excess above the background, which is estimated using a data-driven technique, is observed. Using a nonperturbative semiclassical model, upper limits at 95% confidence level are set on the cross-section for pair production of monopoles with a single Dirac magnetic charge in the mass range of 20-150 GeV. The search significantly improves on the previous cross-section limits for production of low-mass monopoles in ultraperipheral Pb+Pb collisions.
Expected and observed cross-section upper limits computed using the CL$_{s}$ method for $|q_{m}| = 1 g_{\textrm{D}}$ and assuming FPA model
The production cross sections of $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton$-$lead (p$-$Pb) collisions at the center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. Nuclear modification factors ($R_{\mathrm {pPb}}$) of non-prompt $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ are calculated as a function of the transverse momentum ($p_{\mathrm T}$) to investigate the modification of the momentum spectra measured in p$-$Pb collisions with respect to those measured in proton$-$proton (pp) collisions at the same energy. The $R_{\mathrm {pPb}}$ measurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significant $p_{\mathrm T}$ dependence. The $p_{\mathrm T}$-integrated cross sections and $p_{\mathrm T}$-integrated $R_{\mathrm {pPb}}$ of non-prompt $\mathrm {D^0}$ and $\mathrm {D^+}$ mesons are also computed by extrapolating the visible cross sections down to $p_{\mathrm T}$ = 0. The non-prompt D-meson $R_{\mathrm {pPb}}$ integrated over $p_{\mathrm T}$ is compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt $\mathrm {\Lambda_{c}^{+}/D^{0}}$ and $\mathrm{D^+/D^0}$ production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function of $p_{\mathrm T}$ display a similar trend to that measured for charm hadrons in the same collision system.
Non-prompt $\mathrm{D}^0$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.
Non-prompt $\mathrm{D}^+$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.
Non-prompt $\Lambda_{c}^{+}$ $p_\mathrm{{T}}$-differential production cross section $\mathrm{d}^2\sigma/\mathrm{d}p_\mathrm{T}\mathrm{d}y$ in p--Pb collisions at $\sqrt{{s_\mathrm{NN}}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $-0.96 < y_{\mathrm{cms}} < 0.04$.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.
Data from Figure 1, panel a, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Xe+Xe collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons $\Xi^-$ and $\overline{\Xi}^+$ and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p$-$Pb, and Pb$-$Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}=5.02\ \mathrm{TeV}$. The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data.
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in pp collisions at $\sqrt{s} = 5.02$ TeV
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV
Measurements of (anti)deuteron and (anti)$^3$He production in the rapidity range $ |y| < $ 0.5 as a function of the transverse momentum and event multiplicity in Xe$-$Xe collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The coalescence parameters $B_2$ and $B_3$ are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)$^3$He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe$-$Xe collisions and shows features similar to those already observed in Pb$-$Pb collisions, i.e., the mass ordering at low transverse momentum and the meson$-$baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe$-$Xe collisions. The extracted chemical freeze-out temperature $T_{\rm chem}$ = (154.2 $\pm$ 1.1) MeV in Xe$-$Xe collisions is similar to that observed in Pb$-$Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations.
Transverse momentum spectra of 3He nuclei measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (right panel).
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 0 to 10 percent.
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 10 to 20 percent.