Observation of a dimuon resonance at 9.5-GeV in 400-GeV proton - nucleus collisions

The E288 collaboration Herb, S.W. ; Hom, D.C. ; Lederman, L.M. ; et al.
Phys.Rev.Lett. 39 (1977) 252-255, 1977.
Inspire Record 120368 DOI 10.17182/hepdata.42613

Dimuon production is studied in 400-GeV proton-nucleus collisions. A strong enhancement is observed at 9.5 GeV mass in a sample of 9000 dimuon events with a mass $m_{\mu^+\mu^-} \to$ 5 GeV.

1 data table

Two peaks were observed. Mass spectrum was fitted to one and two resonance hypothesis.


Diffraction Dissociation of High Energy Protons on Hydrogen and Deuterium Targets

Akimov, Y. ; Bartenev, V. ; Cool, R. ; et al.
Phys.Rev.Lett. 39 (1977) 1432, 1977.
Inspire Record 121766 DOI 10.17182/hepdata.21002

We report results from a measurement of the inclusive processes pp→Xp and pd→Xd in the range 5<Mx2s<0.1, 0.01≲|t|≲0.1 (GeV/c)2, and incident proton momenta of 65, 154, and 372 GeV/c. Both pp and pd data show an exponential t dependence and a dominant 1Mx2 behavior for Mx2s≲0.05. By comparing pp and pd data we test factorization and, using the Glauber model, we measure the XN total cross section, σXN=43±10 mb.

4 data tables

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF J / psi PRODUCTION IN 280-GeV/c mu+ IRON INTERACTIONS

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 89 (1980) 267-270, 1980.
Inspire Record 143938 DOI 10.17182/hepdata.27264

Virtual photoproduction of J/ ψ mesons has been measured for 280 GeV muon iron interactions in an iron/scintillator calorimeter target. The J/ψ's were identified by their decay into muon pairs. 315 events were observed, about half of which were elastic. The t , Q 2 and v distributions of these elastic events are presented. The v dependence is measured between 40 and 180 Mev and compared with lower energy photoproduction results. The Q 2 dependence is compared with the predictions of the vector dominance model.

4 data tables

TPRIME DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL Q2 AND NU WITH 280 GEV MUON BEAM.

NORMALIZED Q**2 DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL NU AND T WITH 280 GEV MUON BEAM.

EXTRAPOLATION OF Q**2 AND T DEPENDENCE TO CALCULATE D(SIG)/DT AT Q**2=0 AND T=0 FOR ELASTIC J/PSI PHOTOPRODUCTION PER NUCLEON.

More…

High Statistics Study of ($\sim$ 10$^6$ events) of $J/\psi$ Production and $\Upsilon$ Production in the energy range 150 to 280 GeV by $\pi^\pm$, $p^\pm$ incident particle

The Saclay-CERN-College de France-Ecole Poly-Orsay collaboration Badier, J. ; Boucrot, J. ; Bourotte, J. ; et al.
AIP Conf.Proc. 68 (1981) 201-204, 1981.
Inspire Record 154782 DOI 10.17182/hepdata.49656

We have performed in the NA3 experiment the study of high mass dimuon production by a hadronic unseparated beam on hydrogen and platinum targets. The comparison of the production cross‐section for proton and antiproton together with the differential cross‐section dσ/dx allows us to compare the data with a production mechanism involving quark‐antiquark and gluon‐gluon interactions. The cosΘ* distribution of the same J/ψ data have also been analysed and results will be presented. Finally we have observed T production from 150 GeV/c incident pions.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A-dependence of Muon Pair Production in $\pi^-$ Nucleus Interactions at 280-{GeV}/$c$

Falciano, S. ; Freudenreich, K. ; Juillot, P. ; et al.
Phys.Lett.B 104 (1981) 416-420, 1981.
Inspire Record 166161 DOI 10.17182/hepdata.31061

We have measured the relative cross sections for muon pair production by 280 GeV/ c negative pions on three different targets: carbon, copper, and tungsten. The value of α obtained from the parametrization σ = constant × A α is 0.94 ± 0.02 ± 0.02, whereas the parametrization σ≈σ 0 ( Z A ) A α′ , where σ 0 ( Z A ) is given by the Drell-Yan model, leads to α ′ = 0.97 ±0.02±0.02. This last result is in agreement with the quark additivity rule which is inherent in the Drell-Yan model, no dependence is observed on the transverse momentum of the muon pair.

2 data tables

PARAMETRISATION OF CROSS-SECTION IS SIG=CONST.*A**POWER.

PARAMETRISATION OF CROSS-SECTION IS SIG=SIG0(Z/A)*A**POWER WHERE SIG0(Z/A) IS GIVEN BY DRELL-YAN MODEL.


MEASUREMENT OF THE NUCLEON STRUCTURE FUNCTION F(2) IN MUON - IRON INTERACTIONS AT 120-GeV, 250-GeV AND 280-GeV

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 105 (1981) 322-328, 1981.
Inspire Record 167335 DOI 10.17182/hepdata.31045

A measurement of the nucleon structure function F 2 on iron is presented. The data cover a kinematic range of 3.25 ⪕ Q 2 ⪕ 200 GeV 2 and 0.05 ⪕ x ⪕ 0.65 . The data clearly show scaling violation. Fits in leading-order QCD have been made and values for the scale breaking parameter λ are given.

54 data tables

No description provided.

No description provided.

No description provided.

More…

Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

50 data tables

ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Charged Charm Production in Proton - Emulsion Interactions at 400-{GeV}/$c$

The Aligarh-Bombay-Chandigarh-Jammu-Varanasi collaboration Aziz, T. ; Ahmad, S. ; Ahrar, H. ; et al.
Z.Phys.C 27 (1985) 325, 1985.
Inspire Record 206837 DOI 10.17182/hepdata.18517

A study of charged charm production is made at 400 GeV incident energy of protons in nuclear emulsion. A total of 7005 primary stars have been scrutinized to look for charm particle decays in the forward cone within a decay distance of 100–1,000 μm (3,056 stars) and 100–2,000 μm (3,949 stars). In all 10 charm candidates decaying to 3 charged particles plus neutrals have been observed. Background due to secondary interactions for events of such topology is estimated to be ≈3. Background due to strange particle decays is estimated to be negligible. The rest of the events are attributed toΛc+ andD± decays. This leads to a value of 91±35 μb/nucleon for the total charged charm production cross section. Using production cross section forD± from other experiments we obtainΛc+ production cross section as 62±27 μb/nucleon. Two cases of pair production of charm have been seen.

2 data tables

Axis error includes +- 0.0/0.0 contribution (NOT GIVENDECAY-BR(BRN=D+ --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=D- --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=LAMBDA/C+ --> 3CHARGED (NEUTRALS), BR=0.6)).

Axis error includes +- 0.0/0.0 contribution (NOT GIVENDECAY-BR(BRN=D+ --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=D- --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=LAMBDA/C+ --> 3CHARGED (NEUTRALS), BR=0.6)).


A MEASUREMENT OF THE DIFFERENCE BETWEEN THE SINGLE NUCLEON CROSS-SECTIONS FOR j / psi MUOPRODUCTION IN IRON AND IN H-2, D-2 TARGETS

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 152 (1985) 433-438, 1985.
Inspire Record 207459 DOI 10.17182/hepdata.30432

The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .

3 data tables

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.