Date

Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

88 data tables match query

No description provided.

No description provided.

No description provided.

More…

High-precision Measurements of piP Elastic Differential Cross Sections in the Second Resonance Region

The EPECUR collaboration Alekseev, I.G. ; Andreev, V.A. ; Bordyuzhin, I.G. ; et al.
Phys.Rev.C 91 (2015) 025205, 2015.
Inspire Record 1323450 DOI 10.17182/hepdata.67659

Cross sections for pi+-p elastic scattering have been measured to high precision, for beam momenta between 800 and 1240 MeV/c, by the EPECUR Collaboration, using the ITEP proton synchrotron. The data precision allows comparisons of the existing partial-wave analyses (PWA) on a level not possible previously. These comparisons imply that updated PWA are required.

249 data tables match query

Differential cross section of elastic $\pi^+$p-scattering at P= 800.25 MeV/c. Errors shown are statistical only.

Differential cross section of elastic $\pi^+$p-scattering at P= 803.75 MeV/c. Errors shown are statistical only.

Differential cross section of elastic $\pi^+$p-scattering at P= 807.25 MeV/c. Errors shown are statistical only.

More…

Direct measurement of leptonic coupling asymmetries with polarized Z's.

The SLD collaboration Abe, K. ; Akagi, T. ; Allen, N.J. ; et al.
Phys.Rev.Lett. 79 (1997) 804-808, 1997.
Inspire Record 442260 DOI 10.17182/hepdata.19552

We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.

1 data table match query

No description provided.


K+- proton scattering from 200 to 600 MeV/c

Burnstein, R.A. ; LeFebvre, J.J. ; Petersen, D.V. ; et al.
Phys.Rev.D 10 (1974) 2767-2777, 1974.
Inspire Record 97215 DOI 10.17182/hepdata.24945

The differential cross section for K+p elastic scattering has been measured at several momenta in the interval 200-600 MeV/c within a hydrogen bubble chamber. The data have been fitted with a partial-wave analysis. We obtain solutions which are dominated over the entire momentum range by s-wave scattering, with constructive interference between the nuclear and Coulomb scattering. The effective-range approximation with only s waves yields a K+p scattering length a=−0.314±0.007 F and an effective range r0=0.36±0.007 F. The measured total inelastic cross section at 588 MeV/c is 11−5+9 μb.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

K+ p and k+ d total cross-sections in the momentum range 0.57-1.16 gev/c

Bowen, T. ; Jenkins, E.W. ; Kalbach, R.M. ; et al.
Phys.Rev.D 7 (1973) 22-26, 1973.
Inspire Record 82624 DOI 10.17182/hepdata.22144

K+p and K+d total cross sections were measured in the momentum range 0.57-1.16 GeV/c using a secondary, separated kaon beam of the Lawrence Berkeley Laboratory Bevatron and conventional transmission-counter techniques. No evidence was found for structure in the cross section of either reaction as previously indicated near 0.7 GeV/c.

1 data table match query

No description provided.


Measurements of spin rotation parameter A in pion proton elastic scattering at 1.62-GeV/c.

The ITEP-PNPI collaboration Alekseev, I.G. ; Budkovsky, P.E. ; Kanavets, V.P. ; et al.
Phys.Lett.B 485 (2000) 32-36, 2000.
Inspire Record 526552 DOI 10.17182/hepdata.41744

The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

2 data tables match query

No description provided.

No description provided.


The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables match query

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…