Date

Measurement of the Cross Section for Prompt Isolated Diphoton Production in p\bar p Collisions at \sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 84 (2011) 052006, 2011.
Inspire Record 915978 DOI 10.17182/hepdata.60557

This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.

6 data tables

Diphoton production cross section as a function of the diphoton invariant mass.

Diphoton production cross section as a function of the diphoton transverse momentum.

Diphoton production cross section as a function of the azimuthal angle difference in the two photons.

More…

Version 2
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 704 (2011) 467-473, 2011.
Inspire Record 914546 DOI 10.17182/hepdata.102406

We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.

0 data tables

Observation of the antimatter helium-4 nucleus

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nature 473 (2011) 353, 2011.
Inspire Record 893021 DOI 10.17182/hepdata.58495

High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ($^4\bar{He}$), also known as the anti-{\alpha} ($\bar{\alpha}$), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 $^4\bar{He}$ counts were detected at the STAR experiment at RHIC in 10$^9$ recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.

1 data table

Differential invariant yields of (anti)baryons evaluated at pT/B =0.875 GeV/c, in central 200 GeV Au+Au collisions.


High $p_{T}$ non-photonic electron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 83 (2011) 052006, 2011.
Inspire Record 889563 DOI 10.17182/hepdata.96051

We present the measurement of non-photonic electron production at high transverse momentum ($p_T > $ 2.5 GeV/$c$) in $p$ + $p$ collisions at $\sqrt{s}$ = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons ($\frac{e^++e^-}{2}$) at 3 GeV/$c < p_T <~$10 GeV/$c$ from bottom and charm meson decays to be ${d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0}$ = 4.0$\pm0.5$({\rm stat.})$\pm1.1$({\rm syst.}) nb and ${d\sigma_{D\to e} \over dy_e}|_{y_e=0}$ = 6.2$\pm0.7$({\rm stat.})$\pm1.5$({\rm syst.}) nb, respectively.

48 data tables

The electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3.0$ GeV/c

The electron pair invariant mass distributions for electrons at $8 < p_{T} < 10$ GeV/c

The simulated electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3$ GeV/c

More…

Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 83 (2011) 061901, 2011.
Inspire Record 889553 DOI 10.17182/hepdata.102950

We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.

7 data tables

Projections of 2+1 correlation on $\Delta\phi$ for 200 GeV top 12% central-triggered and mid-central Au+Au and minimum bias d+Au data.

Projections of 2+1 correlation on $\Delta\eta$ for 200 GeV top 12% central-triggered and mid-central Au+Au and minimum bias d+Au data.

Transverse momentum distributions per trigger pair for the same- and away-side hadrons associated with di-jet triggers (|$\Delta\phi$| < 0.5, |$\Delta\eta$| < 0.5).

More…

Production of Lambda, Cascade and Omega Hyperons in ppbar Collisions at1.96 TeV Center of Mass Energy

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 012002, 2012.
Inspire Record 884451 DOI 10.17182/hepdata.63825

We report a set of measurements of inclusive invariant transverse momentum differential cross sections of lambda, cascade and omega hyperons reconstructed in the central region with pseudorapidity within 1 and transverse momentum up to 10 GeV/c Events are collected with a minimum-bias trigger in ppbar collisions at a center-of-mass energy of 1.96 TeV using the CDF II detector at the Tevatron Collider. As transverse momentum increases, the slopes of the differential cross sections are similar not only to each other but also to those of mesons, which could indicate a universality of the particle production in transverse momentum The invariant differential cross sections are also presented for different charged-particle multiplicity intervals.

5 data tables

The PT differential cross section for LAMBBA production in the |pseudorapidity| range < 1.

The PT differential cross section for XI- production in the |pseudorapidity| range < 1.

The PT differential cross section for OMEGA- production in the |pseudorapidity| range < 1.

More…

Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Chin.Phys.C 45 (2021) 044002, 2021.
Inspire Record 872067 DOI 10.17182/hepdata.102351

Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...

902 data tables

background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0

background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1

background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2

More…

Version 2
Strange and Multi-strange Particle Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 62.4 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 024901, 2011.
Inspire Record 871561 DOI 10.17182/hepdata.96847

We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

0 data tables

Measurement of the parity-violating longitudinal single-spin asymmetry for $W^{\pm}$ boson production in polarized proton-proton collisions at $\sqrt{s} = 500 $GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 106 (2011) 062002, 2011.
Inspire Record 866968 DOI 10.17182/hepdata.104930

We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from $W^{+}$ and $W^{-}$ boson production in longitudinally polarized proton-proton collisions at $\sqrt{s}=500 $GeV by the STAR experiment at RHIC. The measured asymmetries, $A^{W^+}_{L}=-0.27\pm 0.10\/({\rm stat.})\pm 0.02\/({\rm syst.}) \pm 0.03\/({\rm norm.})$ and $A^{W^-}_{L}=0.14\pm 0.19\/({\rm stat.})\pm 0.02 \/({\rm syst.})\pm 0.01\/({\rm norm.})$, are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.

5 data tables

$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.

$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.

Longitudinal single-spin asymmetry, AL, for W± events as a function of the leptonic pseudorapidity, $\eta_e$, for 25 < $E^e_T$ < 50 GeV in comparison to theory predictions

More…

Scaling properties at freeze-out in relativistic heavy ion collisions

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 034910, 2011.
Inspire Record 865572 DOI 10.17182/hepdata.104504

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62.4 GeV. The data are studied with hydrodynamically-motivated Blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au+Au and $pp$ collisions, the dependence of freeze-out parameters on the system size is also explored. This multi-dimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu+Cu collisions, which expands the system size dependence studies from Au+Au data with detailed measurements in the smaller system, shows that the bulk freeze-out properties of charged particles studied here scale with the total charged particle multiplicity at mid-rapidity, suggesting the relevance of initial state effects.

26 data tables

Negatively charged pion spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.

Negatively charged pion spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.

Negatively charged kaon spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.

More…