We present the results of a search for the production of light elements in p¯p collisions at the Fermilab Tevatron collider. Momentum, time of flight, and dE/dx measurements are used to distinguish nuclei from elementary particles. A production ratio for deuterium to hydrogen is calculated and compared to the primordial value of the big bang model. Some evidence for tritium is found and none for helium isotopes.
Invariant cross section and cross section per unit rapidity interval for deuterium and anti-deuterium production.
Independent measurement of the proton or anti-proton production cross section (K Gulbrandsen, Senior Thesis, University of Wisconsin-Madison 1998).
Measured cross sections for tritium production.
The transverse-momentum spectra of lambdas (Λ0, Λ¯0) produced in the central region has been measured in p¯p collisions at s=1.8 TeV at the Fermilab Collider. We find that the average transverse momentum of the lambdas increases more rapidly with center-of-mass energy than that of charged particles, and the ratio of lambdas to charged particles increases as a function of center-of-mass energy.
No description provided.
No description provided.
No description provided.
abstract only
No description provided.
No description provided.
No description provided.
In an inclusive experiment, isotopically resolved fragments, 3≤Z≤13, produced in high-energy proton-nucleus collisions have been studied using a low mass time-of-flight, gas ΔE-silicon E spectrometer and an internal gas jet. Measurement of the kinetic energy spectra from 5 to 100 MeV enabled an accurate determination of fragment cross sections from both xenon and krypton targets. Fragment spectra showed no significant dependence on beam energy for protons between 80 and 350 GeV/c. The observed isobaric yield is given by YαAf−τ, where τ∼2.6 for both targets; this also holds for correlated fragment data. The power law is the signature for the fragment formation mechanism. We treat the formation of fragments as a liquid-gas transition at the critical point. The critical temperature Tc can be determined from the fragment isotopic yields, provided one can set an energy scale for the fragment free energy. The high energy tails of the kinetic energy spectra provide evidence that the fragments originate from a common remnant system somewhat lighter than the target which disassembles simultaneously via Coulomb repulsion into a multibody final state. Fragment Coulomb energies are about 110 of the tangent sphere values. The remnant is characterized by a parameter T, obtained from the high energy tails of the kinetic energy distributions. T is interpreted as reflecting the Fermi momentum of a nucleon in this system. Since T≫Tc, and T is approximately that value expected for a cold nucleus, we conclude that the kinetic energy spectra are dominated by this nonthermal contribution. [NUCLEAR REACTIONS Xe(p,X), Kr(p,X), 80≤Eq≤350 GeV; measured σ(E,θ), X=Li to Al, θ=34∘. Fragmentation.]
We have examined charged multiplicities arising from p − p and p− p ̄ collisions over the range of center of mass energies, s , from 30 GeV to 1800 GeV. Results from Tevatron experiment E735 support the presence of double parton interactions. These processes can be seen to account for a large fraction of the increase in the non single diffraction inelastic cross section from energies of about 200 GeV to 1800 GeV.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
Fermilab experiment E735 located at the CO intersection region of the\(\sqrt s= 1.8\) TeV\(p\bar p\) collider analysed over 900 Φ→K+K− events. Measured were the transverse momentum spectrum, the correlation between the average transverse momentum <pt> and the charged particle multiphcityNc, as well as the probability of Φ production per charged track,NΦ/Nc, versusNc. We have also made an estinate of the total inclusive cross section for Φ mesons,\(\sigma (p\bar p \to \phi X) = 7.3 \pm 2.2 mb\).
Ratio of phi to rho0 production in high and low charged particle multiplicity events.