A measurement of the proton structure function F 2 ( x , Q 2 ) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 −2 – 10 −4 and Q 2 > 5 GeV 2 . The measurement is based on an integrated luminosity of 22.5 nb −1 recorded by the H1 detector in the first year of HERA operation. The structure function F 2 ( x , Q 2 ) shows a significant rise with decreasing x .
No description provided.
No description provided.
No description provided.
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.
No description provided.
No description provided.
No description provided.
Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.
Deuterium data. Overall normalization error of 7 pct not included.
Deuterium data. Overall normalization error of 7 pct not included.
Deuterium data. Overall normalization error of 7 pct not included.
Using the CHARM detector 36 000 deep inelastic neutral-current reactions of neutrinos (and 2000 of antineutrinos) from the 160 GeV narrow-band beam were recorded. The differential cross section d σ d x in the Bjorken scaling variable x was computed by unfolding the effects of limited acceptance and of resolution of the detector as well as the ambiguity of the energy of the incoming neutrinos (produced by π- or K-decay). Combining the results from the neutrino and antineutrino data, the structure functions F 2 and xF 3 and the antiquark momentum distribution measured via the NC coupling were determined. The distributions are in agreement with the corresponding CC distibutions. Comparisons with deep inelastic muon scattering confirm the universality of nuclear structure functions as probed by the weak and the electromagnetic currents.
SEE THE PAPER FOR THE PRECISE DEFNS OF F(+), F(-).
None
No description provided.
No description provided.
No description provided.
The isoscalar nucleon structure functionsF2(x, Q2) andxF3(x, Q2) are measured in the range 0
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The energy distribution of inclusive hadrons produced by 280 GeV muons on hydrogen and deuterium targets are compared. The sum of the scaled energy distributions of the positive and negative hadrons is found to be the same for the two targets. The difference of these distributions is observed to factorise inx andz and thez-dependence is found to be independent of the target type and have a form (1−z)2.1±0.2. The net charge of the hadronic jet is positive at highx even in the case when the scattering takes place on the neutron. These results are in good agreement with the expectations of the Quark Parton Model.
No description provided.
No description provided.
No description provided.
The x and Q 2 dependence of the single photon exchange cross section d 2 σ /d Q 2 d x and the proton structure functions F 2 ( x , Q 2 ) and R ( x , Q 2 ) have been measured in deep inelastic muon proton scattering in the region 0.02 < x < 0.8 and 3 < Q 2 < 190 GeV 2 . By comparing data at different incident muon energies R was found to have little kinematic dependence and an average value of −0.010 ± 0.037 (stat.) ± 0.102 (stat.). The observed deviations from scaling gave the value of Λ MS , the QCD mass scale parameter, to be 105 −45 +55 (stat.) −45 +85 (syst.) MeV. The fraction of the momentum of the nucleon carried by gluons was found to be ∼56% at Q 2 ∼22.5 GeV 2 . It is shown that to obtain a description of the data for F 2 ( x , Q 2 ) together with that measured in deep inelastic electron-proton scattering at lower Q 2 it is necessary to include additional higher twist contributions. The value of Λ MS remains unchanged with the inclusion of these contributions which were found to have an x -dependence of the form x 3 /(1 − x ).
No description provided.
No description provided.
No description provided.
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.