This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.
No description provided.
No description provided.
No description provided.
The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.
No description provided.
No description provided.
No description provided.
None
No description provided.
The elastic scattering cross-section of π - on deuterium at 895 MeV/ c measured with counters and wire spark chambers is given in a region of momentum transfer between 0.16 and 0.96 (GeV/ c ) 2 .
No description provided.
Experimental results are presented on the excitation of the nucleon isobars N ∗ (1518) and N ∗ (1688) in proton-proton collisions at an incident momentum of 19.2 GeV/ c and in the range of four-momentum squared 0.6 ⩽7 z . sfnc ; t | ⩽ 5.8 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).
None
Only statistical errors are given.
Only statistical errors are given.
Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.
'1'.
'1'.
'1'.
The differential cross-section for π − d elastic scattering has been measured at 9.0, 13.0, and 15.2 GeV/ c for t -values up to 2.3 GeV 2 . The results are analysed by comparison with the Glauber scattering model.
No description provided.
No description provided.
No description provided.
The differential cross-section for pd elastic scattering has been measured at 9.7, 12.8 and 15.8 GeV/ c for t -values up to −2 GeV 2 . The Glauber multiple scattering model has been used to analyse the data, the main interest being the double scattering region.
No description provided.
No description provided.
No description provided.
The K − p differential and total elastic cross-sections have been measured at 14.25 GeV/ c . The results have been compared with various Regge models.
No description provided.