A neutral beam designed to transmit a high flux of Λ0 hyperons with momenta above 50 GeV/c has been built and operated at Fermilab. Inclusive production cross sections per target nucleus have been measured for p+A→Λ0+X, p+A→KS0+X, and p+A→Λ¯0+X with 300-GeV protons incident on solid targets A=berylium,copper,andlead. The region of phase space covered is predominantly projectile fragmentation: 0.2<~x<~1, 0<~p⊥<~2 GeV/c. The A dependence of the inclusive cross sections is analyzed. The cross sections are compared to other work in pp collisions by extrapolating the A dependence to A=1. The results of measurements of Λ0 and Λ¯0 polarization from the beryllium target are presented.
No description provided.
No description provided.
No description provided.
Inclusive production cross sections have been measured for the processes p+A→Ξ0+X (A=Be, Cu, Pb) and for p+Be→Ξ¯0+X. Data were taken at angles of 0, 2, 3.5, 7.3, and 9.8 mrad between the incident 400-GeV proton beam and the outgoing hyperon beam. Production cross sections for Λ and Λ¯ production were measured at the same time. The A dependence of the Ξ0 cross sections is discussed, along with interpretations in terms of various models.
No description provided.
No description provided.
No description provided.
Inclusive production of Λ0 hyperons by 300-GeV protons has been measured at fixed production angles in the laboratory between 0 and 9 mrad and laboratory momenta from 65 to 300 GeV/c. Three different solid targets were used: beryllium, copper, and lead. The A dependence of the data is suggestive of a collision model in which the hadron loses energy and gains transverse momentum as it leaves the nucleus. The experimental results are compared to such a model, and the implications are discussed.
No description provided.
No description provided.
No description provided.
We have measured the forward production spectra of various neutral particles produced by π−, K−, p¯, and p at 200 GeV/c, and by π− at 290 GeV/c incident on a Be target. The salient features of these measurements are (1) copious production of KSo at large Feynman xL for incident π− and K−, (2) production of roughly equal fluxes of Λ0 and Λ¯0 for incident π−, and (3) close similarity of the following spectra: π−→n and K−→Λ0; π−→Λ0, π−→Λ¯0, and p→KS0; π−→KS0 and p→Λ0. The overall features of the various distributions seem to agree with the ideas of dimensional counting presented in the constituent-interchange model of quark collisions. Results are presented in terms of the invariant cross section Ed3σ(xL, PT=0)dp3 per Be nucleus for each inclusive reaction.
No description provided.
No description provided.
No description provided.
The magnetic moment of the Λ0 hyperon has been measured to be μΛ=(−0.6138±0.0047)μN.
No description provided.
The polarization of Ξ0 and Λ hyperons produced by 400-GeV protons interacting with a beryllium target has been measured in the projectile fragmentation region. The Ξ0 polarization agrees in sign, magnitude, and kinematic behavior with that of Λ. The target dependence of these Ξ0 and Λ polarizations was also investigated with use of Cu and Pb targets.
No description provided.
Polarization of the scattered Λ has been measured in the reaction Λ+p→Λ+p. A total of 90 000 elastic events was recorded. Polarization was observed which decreased in magnitude with increasing momentum. For 0.1<~|t|<~0.4 GeV2 the polarization is P=−0.21±0.07 for p=110 GeV/c and is +0.01±0.04 at p=320 GeV/c. Results for 860 Λ¯−p elastic scatterings are also presented.
90000 ELASTIC EVENTS.
860 ELASTIC EVENTS.
Data are presented for the left-right asymmetry in inclusive production of π+, π−, and p with proton beams (polarized normal to the scattering plane) of 13.3 and 18.5 GeV/c incident on a LH2 target. At both energies the asymmetry in π+ production grows steadily to about 25% near the kinematic limit, whereas the π− and p asymmetries are consistent with zero over the measured range of pt, 1.1–2.2 GeV/c.
The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\times10^{-3}<-t<4.1\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\text{Re} r_5=0.088\pm 0.058$ and $\text{Im} r_5=-0.161\pm 0.226$.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.