We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
The process $e^+e^-\to\omega\eta\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\to\omega\eta\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \to \omega\eta\pi^0$ is found to be $\omega a_0(980)$.
The energy interval, integrated luminosity ($L$), number of selected events ($N$), estimated number of background events ($N_{bkg}$), detection efficiency for $e^+e^-\to\omega\eta\pi^0\to 7\gamma$ events ($\epsilon$), radiative correction ($\delta+1$), and $e^+e^-\to\omega\eta\pi^0$ Born cross section ($\sigma$). The shown cross-section errors are statistical. The systematic error is 4.2%. The 90% confidence level upper limits are listed for the first two energy intervals.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.
Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).
Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).
The cross section for the e$^{+}$ e$^{–}$ → π$^{+}$π$^{–}$π$^{0}$ process in the energy range 1.05–2.00 GeV has been measured using the data collected in the experiment with the Spherical Neutral Detector (SND) at the VEPP-2000 e$^{+}$ e$^{–}$ collider. The obtained results on the cross section are in good agreement with previous measurements by the SND at the VEPP-2M collider and BABAR, but have a better accuracy.
The Born cross section of the process e+e- -> pi+pi-pi0.
We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.
Results for $v_2$ and $v_3$ as a function of $p_T$ for inclusive charged hadrons at midrapidity in 0-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
We present a systematic study of charged pion and kaon interferometry in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.
HBT parameters of positive pion pairs, shown as value $\pm$ statistical uncertainty [absolute value] $\pm$ systematic uncertainty [%] for the centrality bins shown in Fig. 3.
HBT parameters of negative pion pairs, shown as value $\pm$ statistical uncertainty [absolute value] $\pm$ systematic uncertainty [%] for the centrality bins shown in Fig. 3.
HBT parameters of charge-combined kaon pairs, shown as value $\pm$ statistical uncertainty [absolute value] $\pm$ systematic uncertainty [%] for the centrality bins shown in Fig. 3.
In the experiment with the SND detector at the VEPP-2000 $e^+e^-$ collider the cross section for the process $e^+e^-\to\eta\pi^+\pi^-$ has been measured in the center-of-mass energy range from 1.22 to 2.00 GeV. Obtained results are in agreement with previous measurements and have better accuracy. The energy dependence of the $e^+e^-\to\eta\pi^+\pi^-$ cross section has been fitted with the vector-meson dominance model. From this fit the product of the branching fractions $B(\rho(1450)\to\eta\pi^+\pi^-)B(\rho(1450)\to e^+e^-)$ has been extracted and compared with the same products for $\rho(1450)\to\omega\pi^0$ and $\rho(1450)\to\pi^+\pi^-$ decays. The obtained cross section data have been also used to test the conservation of vector current hypothesis.
The c.m. energy ($\sqrt{s}$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N$), radiative-correction factor ($1 + \delta$), measured $e^+e^- \to \eta \pi^+\pi^-$ Born cross section ($\sigma_B$). For the number of events and cross section the statistical error is quoted. The systematic uncertainty on the cross section is 8.3% at $\sqrt{s}<1.45$ GeV, 5.0% at $1.45<\sqrt{s}<1.60$ GeV, and 7.8% at $\sqrt{s}>1.60$ GeV.
New PHENIX measurements of the anisotropic flow coefficients $v_2\{\Psi_2\}$, $v_3\{\Psi_3\}$, $v_4\{\Psi_4\}$ and $v_4\{\Psi_2\}$ for identified particles ($\pi^{\pm}$, $K^{\pm}$, and $p+\bar{p}$) obtained relative to the event planes $\Psi_n$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.
Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_2$ and $v_3$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.
Azimuthal anisotropy $v_4$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.