The e + e − → 3 π + 3 π − cross section has been measured between 1400 and 2180 MeV with the magnetic detector DM1 at the Orsay storage rings DCI. The cross section increases continuously above 1600 MeV and reaches 2 nb at the maximum explored energy, much larger than VDM previous estimates.
The e + e − → ωπ + π − → π + π − π + π − π 0 cross section has been measured at DCI by the DMI experiment in the 1.4–2.2 GeV energy range. A bump in this cross section appears at 1.65 GeV above a small background, with 6.2 s.d. statistical significance. It can be interpreted as a new isoscalar vector meson: ω ′ or ø ′.
First measurements of the e + e − → K S 0 K ± π ∓ reaction in the 1.4–2.18 GeV energy range have been performed with the magnetic detector DM1 at the Orsay storage rings DCI. The cross section is rather large. The production is mainly K ∗0 K 0 which reveals an interference between isovector and isoscalar amplitudes. These results show again the existence of an isoscalar vector at 1.65 GeV shown to be a φ ′ meson.
First measurements of the e + e − → π + π − K + K − cross section have been performed by the DM1 on DCI in the total energy range 1.4–2.18 GeV. π + π − K + K − production is dominated by K ∗ Kπ dynamics. The cross section is rather large around 1.9 GeV. Comparison with K 0 S inclusive production shows an isospin interference. Upper limits on φππ production are compatible with the OZI rule.
New measurements of thee + e − → π + π − π + π − cross section have been performed by the magnetic detector DM1 at DCI (ORSAY) in the 1.4−2.18 GeV total energy range with statistics of 11000 events. Assuming the4 π ± production is dominated by the ϱ′(1.6) we determine its parameters: M = 1.57 ± 0.02 (stat.) −0.00 +0.06 (syst.) GeV,Γ = 0.51 ± 0.04 (stat.) −0.01 +0.04 (syst.)GeV,Γ ρ ′ee B ϱ′→ ρ 0 π + π − = 2.67 ± 0.19 (stat.) −0.36 +0.27 (syst.)keV.
The e + e − → K S 0 K L 0 cross section has been measured between 1400 and 2180 MeV. About 58 K S 0 K L 0 events were in the magnetic detector DM1 at the Orsay storage ring DCI. The charged and neutral kaon form factor behaviour suggests the existence of a new isoscalar vector meson at 1.65 GeV.
Thee+e−→K+K− cross section has been measured from about 750 events in the energy interval\(1350 \leqq \sqrt s\leqq 2400 MeV\) with the DM2 detector at DCI. TheK± form factor |FF±| cannot be explained by the ρ, ω, ϕ and ρ′(1600). An additional resonant amplitude at 1650 MeV has to be added as suggested by a previous experiment.
A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.
Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.