Proton production in e+e− annihilation at 29 GeV has been studied with the time projection chamber. Measurements of the dependence of proton fractions on momentum, transverse momentum with respect to the jet axis, hadron multiplicity, and event sphericity are reported. Our results are consistent with the assumption that primary baryons and mesons have similar production spectra, and indicate that protons provide more direct probes of underlying fragmentation phenomena than do pions.
No description provided.
Production of φ mesons in e+e− annihilation at a center-of-mass energy of 29 GeV has been observed with the time-projection chamber detector at the PEP storage ring. The φ production rate has been measured in the energy range 0.075
No description provided.
EXTRAPOLAATION TO ALL X USES LUND MONTE CARLO PREDICTIONS.
ERRORS ARE BOTH STATISTICAL AND SYSTEMATIC. PT IS MEASURED RELATIVE TO THE EVENT THRUST AXIS, AND IS FOUND TO HAVE A MEAN VALUE OF 1.0 +- 0.4 GEV.
We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.
No description provided.
Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.
We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.
No description provided.
No description provided.
We have searched for resonances in the reaction e+e−→hadrons, γγ, μμ, and ee, in the energy range 39.79
No description provided.
During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.
Comparison of Bhabhas with QED.
Muon angular distributions.
Forward-backward asymmetry from full angular range.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.
e + e − annihilation into hadrons was studied at CM energies between 39.8 and 45.2 GeV and a search was made for new heavy quarks. No evidence was found for the existence of a narrow state excluding the possible existence of the lowest vector toponium state in this mass range. A search for continuum production of heavy quarks led to lower mass limits for new quarks of 22.0 GeV ( e Q = 2 3 ) and 21.0 GeV ( e Q = 1 3 ). Quarks are found to be pointlike, the corresponding mass parameter being larger than 288 GeV. A fit of the QCD and the electroweak contributions to R = σ tot / σ μμ yielded sin 2 θ W = 0.30 −0.07 +0.23 .
STATISTICAL ERRORS ONLY. NUMERICAL VALUES OF DATA TAKEN FROM PREPRINT.
No description provided.
No description provided.
Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.
No description provided.
No description provided.
No description provided.
The electroweak production asymmetry and the decay fragmentation function for e + e − → c c have been measured at s = 29 GeV using charged D ∗ production over the full kinematic range. The data were taken at PEP using the High Resolution Spectrometer. The measured asymmetry is −0.12 ± 0.08. The total production cross section in units of the point cross section corrected for initial state radiation is R D ∗ = 2.7 ± 0.9 .
ASSUMES SIG(D*+) = SIG(D*0). (EXPT. MEASURES D*+ PRODUCTION ONLY). R VALUE CORRECTED FOR INITIAL STATE RADIATION.
No description provided.