Date

Results on Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 510$ GeV with the STAR Detector at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 852 (2024) 138601, 2024.
Inspire Record 2704122 DOI 10.17182/hepdata.144920

We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.

2 data tables

Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.

Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.


Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

11 data tables

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Measurement of proton-proton elastic scattering and total cross-section at S**(1/2) = 7-TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 101 (2013) 21002, 2013.
Inspire Record 1220862 DOI 10.17182/hepdata.66456

At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).

5 data tables

The measured differential elastic cross section.

The measured differential elastic cross section in the high |T| region. where it originally appeared as a plot, but was not tabulated.

The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.

More…

Measurement of the inelastic proton-proton cross section at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 5-27, 2013.
Inspire Record 1193338 DOI 10.17182/hepdata.68126

A measurement is presented of the inelastic proton-proton cross section at a centre-of-mass energy of sqrt(s) = 7 TeV. Using the CMS detector at the LHC, the inelastic cross section is measured through two independent methods based on information from (i) forward calorimetry (for pseudorapidity 3 < abs(eta) < 5), in collisions where at least one proton loses more than 5E-6 of its longitudinal momentum, and (ii) the central tracker (abs(eta) < 2.4), in collisions containing an interaction vertex with more than 1, 2, or 3 tracks with transverse momenta pT > 200 MeV. The measurements cover a large fraction of the inelastic cross section for particle production over about 9 units of pseudorapidity and down to small transverse momenta. The results are compared with those of other experiments, and with models used to describe high-energy hadronic interactions.

1 data table

$\sigma_\text{inel}$ at $\sqrt{s}=7$ TeV $\xi>5x10^{-6}$.


Rapidity gap cross sections measured with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 72 (2012) 1926, 2012.
Inspire Record 1084540 DOI 10.17182/hepdata.58497

Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.

5 data tables

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 200 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 400 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 600 MeV in the gap.

More…

Measurement of the Inelastic Proton-Proton Cross-Section at sqrt{s}=7 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nature Commun. 2 (2011) 463, 2011.
Inspire Record 894867 DOI 10.17182/hepdata.58283

A first measurement of the inelastic cross-section is presented for proton-proton collisions at a center of mass energy sqrt{s}=7 TeV using the ATLAS detector at the Large Hadron Collider. In a dataset corresponding to an integrated luminosity of 20 mub-1, events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of $60.3 +/- 2.1 mb is measured for xi > 5x10^-6, where xi=M_X^2/s is calculated from the invariant mass, M_X, of hadrons selected using the largest rapidity gap in the event. For diffractive events this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.

1 data table

The measured and extrapolated inelastic cross section. The first error is the experimental error and the second (sys) error is the error in the extrapolation.


Measurement of the differences in the total cross section for antiparallel and parallel longitudinal spins and a measurement of parity nonconservation with incident polarized protons and antiprotons at 200-GeV/c.

The E581/704 collaboration Grosnick, D.P. ; Hill, D.A. ; Kasprzyk, T. ; et al.
Phys.Rev.D 55 (1997) 1159-1187, 1997.
Inspire Record 420534 DOI 10.17182/hepdata.22329

The highest-energy measurement of ΔσL(pp) and the first ever measurement of ΔσL(p¯p), the differences between proton-proton and antiproton-proton total cross sections for pure longitudinal spin states, are described. Data were taken using 200-GeV/c polarized beams incident on a polarized-proton target. The results are measured to be ΔσL(pp)=−42±48(stat)±53(syst) μb and ΔσL(p¯p)=−256±124(stat)±109(syst) μb. Many tests of systematic effects were investigated and are described, and a comparison to theoretical predictions is also given. Measurements of parity nonconservation at 200 GeV/c in proton scattering and the first ever of antiproton scattering have also been derived from these data. The values are consistent with zero at the 10−5 level.

2 data tables

No description provided.

No description provided.


Inelastic cross-section for p-air collisions from air shower experiment and total cross-section for p p collisions at SSC energy

Honda, M. ; Nagano, M. ; Tonwar, S. ; et al.
Phys.Rev.Lett. 70 (1993) 525-528, 1993.
Inspire Record 342678 DOI 10.17182/hepdata.19743

Based on an analysis of the extensive air shower data accumulated over the last ten years at Akeno Cosmic Ray Observatory, the value of the proton-air nuclei inelastic cross section (σinp−air) has been determined assuming the validity of quasi-Feynman scaling of particle production in the fragmentation region. The energy dependence of σinp−air can be represented as 290(E/1 TeV)0.052 mb in the energy interval 1016.2–1017.6 eV, where E is the incident proton energy. The total p-p cross section (σtotp−p), derived using the nuclear distribution function obtained from the shell model, increases with energy as 38.5+1.37 ln2(√s /10 GeV) mb.

2 data tables

No description provided.

Best fit to data gives SIG(PP) = 38.5 + 1.37*LN(SQRT(S)/10 GeV)**2.


Measurement of the Total Cross-section Difference $\Delta \sigma^-$t ($p p$) in the Energy Range From 0.43-{GeV} to 2.4-{GeV}

Perrot, F. ; Azaiez, H. ; Ball, J. ; et al.
Nucl.Phys.B 278 (1986) 881-904, 1986.
Inspire Record 228310 DOI 10.17182/hepdata.33569

The SATURNE II polarized proton beam and the Saclay frozen spin polarized proton target were used to measure the total cross section difference Δσ T = −2 σ 1 tot at 26 energies between 0.43 and 2.4 GeV. Here Δσ T is the total cross section difference for transverse beam and target spins parallel and antiparallel, respectively, and σ 1tot is one of spin-dependent terms in the total cross section σ tot . The energy dependence of Δσ T below 1 GeV shows similar structures as for Δσ L . An additional minimum appears at about 1.3 GeV, which involves a structure in singlet spin partial waves.

1 data table

Errors contain both statistics and systematics.


Precise Measurements of Proton - Anti-proton and Proton Proton Total Cross-sections at the {CERN} Intersecting Storage Rings

Carboni, G. ; Lloyd Owen, D. ; Potter, K. ; et al.
Nucl.Phys.B 254 (1985) 697-736, 1985.
Inspire Record 207680 DOI 10.17182/hepdata.33833

A detailed account is given of high-precision measurements of the total hadronic cross sections of proton-antiproton and proton-proton interactions at centre-of-mass energies of 30.6, 52.8 and 62.7 GeV. The experiment was performed at the CERN Intersecting Storage Rings (ISR) using the total interaction-rate method, in which additive correction terms for trigger losses were held to less than 6% of the final result. An experimental determination of the vertical beam-displacement scale permitted luminosity-monitor calibrations to be made with high intrinsic accuracy. The overall precision (systematic and statistical errors combined) achieved in the total cross sections was ± 1.1% for proton-antiproton reactions and 0.7% for proton-proton reactions. In the proton-proton case the measurement was the most precise such measurement made at the ISR.

3 data tables

No description provided.

ERRORS CONTAIN BOTH STATISTICS AND SYSTEMATICS.

ERRORS CONTAIN POINT-TO-POINT AND THE ERROR-INDEPENDANT ERRORS.