$\Lambda$ Production in $e^+ e^-$ Annihilation at 29-{GeV}

de la Vaissiere, C. ; Luth, V. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 54 (1985) 2071-2074, 1985.
Inspire Record 209198 DOI 10.17182/hepdata.20378

The production of Λ hyperons in e+e− annihilation has been measured as a function of their total momenta, transverse momenta, and the event thrust. The total production rate is 0.213±0.012±0.018 Λ or Λ¯ per hadronic event. The observation of correlations in rapidity and angles for events with two detected Λ decays supports fragmentation models with local baryon-number compensation.

3 data tables

No description provided.

No description provided.

No description provided.


$\Lambda$(c)+ Production and Semileptonic Decay in 29-{GeV} $e^+ e^-$ Annihilation

Klein, S. ; Himel, T. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 62 (1989) 2444, 1989.
Inspire Record 277034 DOI 10.17182/hepdata.20042

We present results on Λc+ production in 29-GeV e+e− annihilation. The Λc+ are observed via their semileptonic decays to Λe+X and Λμ+X. With radiative corrections, we find σ(e+e−→Λc+X)〉BΛc+→eΛX)= 1.5±0.6±0.5 pb or 0.0038±0.0015±0.0012 Λc+→Λe+X decay per hadronic event, and σ(e+e−Λc+X)B(Λc+→μΛX)= 1.4±1.4±0.4 pb or 0.0035±0.0035±0.0011 Λc+→Λμ+X decay per hadronic event. These results can be used to place constraints on the predictions of various production models.

2 data tables

Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA E+ decay channel.

Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA MU+ decay channel.


$\eta$ and $\eta^\prime$ Production in $e^+ e^-$ Annihilation at 29-{GeV}: Indications for the $D(s$)+- Decays Into $\eta \pi^\pm$ and $\eta^\prime \pi^\pm$

Wormser, G. ; Abrams, G.S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 61 (1988) 1057, 1988.
Inspire Record 261194 DOI 10.17182/hepdata.20080

η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.

4 data tables

Numerical values supplied by G.Wormser.

Z = 0.0 point extrapolated using LUND fragmentation model.

Z = 0.0 point extrapolated using LUND fragmentation model.

More…

$\rho^0$ Production in Deep Inelastic $\mu p$ Interactions

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 133 (1983) 370-374, 1983.
Inspire Record 192074 DOI 10.17182/hepdata.30613

Inclusive ϱ 0 meson production has been measured in 120 GeV and 280 GeV muon-proton interactions. Distributions of z and p T 2 are presented. Primary ϱ 0 production is found to be equal to that of π 0 production within errors.

2 data tables

No description provided.

No description provided.


$\rho^0$ and $\omega$ Production in Deep Inelastic $\mu p$ Interactions at 280-{GeV}/$c$

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Z.Phys.C 33 (1986) 167, 1986.
Inspire Record 231103 DOI 10.17182/hepdata.15815

Inclusive distributions of ρ0 and ω mesons have been measured in deep inelastic μ-p interactions at 280 GeV/c. A comparison of the ρ0 cross sections with other leptoproduction experiments is presented. The ω results represent the first observation of this inclusive channel in high energy leptoproduction. The ρ0 and ω yields are found to be equal as may be expected from the available density of states in isospin space. This contrasts with spin angular momentum where the vector to pseudoscalar meson ratio is suppressed relative to the available number of spin states.

4 data tables

No description provided.

No description provided.

No description provided.

More…

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

5 data tables

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Transverse momentum distribution of the $\rho^0$ candidates (open distribution) overlaid by the combinatorial background estimated with like-sign pairs (not corrected to the acceptance and reconstruction efficiency) and scaled to match in the high transverse momentum region, $p_T$ ≥ 250 MeV/$c$ (hatched distribution). The plot is based on the dataset collected with trigger B.

More…

A Combined Analysis of the Hadronic and Leptonic Decays of the $\Z^0$

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 240 (1990) 497-512, 1990.
Inspire Record 294808 DOI 10.17182/hepdata.29720

We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of M z =91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γ z =2.536±0.045 GeV. The errors on M z have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γ ee =81.2±2.6 MeV, Γ μμ =82.6± 5.8 MeV, and Γ ττ =85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ ℓ + ℓ − = 81.9±2.0 MeV. The hadronic partial width is Γ had =1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γ inv =453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.

4 data tables

Errors are statistical and point to point systematic luminosity error of 1 pct.

Measured values of e+ e- --> e+ e- cross section.

Corrected cross section. Corrections are for t-channel effects and loss of acollinear events near the boundary of the acceptance.

More…

A Comparison of the Energy Distributions of Hadrons Produced in Deep Inelastic Scattering of Muons on Hydrogen and Deuterium Targets

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Z.Phys.C 31 (1986) 175, 1986.
Inspire Record 227131 DOI 10.17182/hepdata.1817

The energy distribution of inclusive hadrons produced by 280 GeV muons on hydrogen and deuterium targets are compared. The sum of the scaled energy distributions of the positive and negative hadrons is found to be the same for the two targets. The difference of these distributions is observed to factorise inx andz and thez-dependence is found to be independent of the target type and have a form (1−z)2.1±0.2. The net charge of the hadronic jet is positive at highx even in the case when the scattering takes place on the neutron. These results are in good agreement with the expectations of the Quark Parton Model.

53 data tables

No description provided.

No description provided.

No description provided.

More…

A Direct observation of quark - gluon jet differences at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 265 (1991) 462-474, 1991.
Inspire Record 316872 DOI 10.17182/hepdata.48454

Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.

1 data table

QUARK means QUARK or QUARKBAR.


A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…