Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Prompt Photons in Photoproduction at HERA

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 66 (2010) 17-33, 2010.
Inspire Record 835534 DOI 10.17182/hepdata.56856

The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb^-1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 < Et < 15 GeV and -1.0 < eta < 2.4, respectively. Cross sections for events with an additional jet are measured as a function of the transverse energy and pseudorapidity of the jet, and as a function of the fractional momenta x_gamma and x_p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k_T factorisation approaches.

17 data tables

Measured inclusive prompt photon cross section in the defined phase space.

Measured prompt photon plus jet cross section in the defined phase space.

Bin averaged differential cross section as a function of ET in the defined phase space.

More…

Three- and Four-jet Production at Low x at HERA

The H1 collaboration Aaron, F.D. ; Aktas, A. ; Alexa, C. ; et al.
Eur.Phys.J.C 54 (2008) 389-409, 2008.
Inspire Record 767896 DOI 10.17182/hepdata.45429

Three- and four-jet production is measured in deep-inelastic $ep$ scattering at low $x$ and $Q^2$ with the H1 detector using an integrated luminosity of $44{.}2 {\rm pb}^{-1}$. Several phase space regions are selected for the three-jet analysis in order to study the underlying parton dynamics from global topologies to the more restrictive regions of forward jets close to the proton direction. The measurements of cross sections for events with at least three jets are compared to fixed order QCD predictions of ${\mathcal{O}}(\alpha_{\rm s}^2)$ and ${\mathcal{O}}(\alpha_{\rm s}^3) $ and with Monte Carlo simulation programs where higher order effects are approximated by parton showers. A good overall description is provided by the ${\mathcal{O}}(\alpha_{\rm s}^3) $ calculation. Too few events are predicted at the lowest $x \sim 10^{-4}$, especially for topologies with two forward jets. This hints to large contributions at low $x$ from initial state radiation of gluons close to the proton direction and unordered in transverse momentum. The Monte Carlo program in which gluon radiation is generated by the colour dipole model gives a good description of both the three- and the four-jet data in absolute normalisation and shape.

23 data tables

Differential cross section as a function of the minimum number of jet for events with at least 3-jets.

Differential cross section as a function of X for events with at least 3-jets.

Differential cross section for events with at least 3-jets as a function of the pseudorapidity of each jet.

More…

Study of hadronic final states from double tagged gamma gamma events at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
CERN-EP-2003-025, 2003.
Inspire Record 619958 DOI 10.17182/hepdata.49702

The interaction of virtual photons is investigated using double tagged gammagamma events with hadronic final states recorded by the ALEPH experiment at e^+e^- centre-of-mass energies between 188 and 209 GeV. The measured cross section is compared to Monte Carlo models, and to next-to-leading-order QCD and BFKL calculations.

10 data tables

Differential cross section as a function of the relative energy of the scattered electrons.

Differential cross section as a function of the polar angle THETA of the scattered electrons.

Differential cross section as a function of the virtuality Q**2 of the photons.

More…