Measurement of Jet Production Cross Sections in Deep-inelastic $ep$ Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Andreev, Vladimir ; et al.
Eur.Phys.J.C 77 (2017) 215, 2017.
Inspire Record 1496981 DOI 10.17182/hepdata.86390

A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80\,{\rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290\,{\rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15\,000\,{\rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{\rm jet}<7\,{\rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $\alpha_s(M_Z)$ is determined in next-to-leading order.

55 data tables

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

More…

First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.D 95 (2017) 012010, 2017.
Inspire Record 1465650 DOI 10.17182/hepdata.73182

The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.

8 data tables

Total $\nu_\mu$ CC1$\pi^+$ cross section on water in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$. The T2K data point is placed at the $\nu_\mu$ flux mean energy.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $p_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $\cos\theta_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

More…

Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.Lett. 116 (2016) 181801, 2016.
Inspire Record 1408741 DOI 10.17182/hepdata.73984

T2K reports its first measurements of the parameters governing the disappearance of $\bar{\nu}_\mu$ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic $\bar{\nu}_\mu$ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the $\bar{\nu}_\mu$ survival probability is expected to be minimal. Using a dataset corresponding to $4.01 \times 10^{20}$ protons on target, $34$ fully contained $\mu$-like events were observed. The best-fit oscillation parameters are $\sin^2 (\bar{\theta}_{23}) = 0.45$ and $|\Delta\bar{m}^2_{32}| = 2.51 \times 10^{-3}$ eV$^2$ with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 $\times 10^{-3}$ eV$^2$ respectively. These results are in agreement with existing antineutrino parameter measurements and also with the $\nu_\mu$ disappearance parameters measured by T2K.

6 data tables

1$\sigma$ C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

90% C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

Best-fit point in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

More…

A Precise Measurement of the Muon Neutrino-NucleonInclusive Charged Current Cross-Section off an IsoscalarTarget in the Energy Range\boldmath{$2.5 < E_\nu < 40$}~GeV by NOMAD

The NOMAD collaboration Wu, Q. ; Mishra, Sanjib Ratan ; Godley, A. ; et al.
Phys.Lett.B 660 (2008) 19-25, 2008.
Inspire Record 767013 DOI 10.17182/hepdata.50629

We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range $2.5 \leq E_\nu \leq 40$ GeV. The significance of this measurement is its precision, $\pm 4$% in $2.5 \leq E_\nu \leq 10$ GeV, and $\pm 2.6$% in $10 \leq E_\nu \leq 40$ GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

1 data table

Inclusive muon-neutrino charged current cross section.


Spin asymmetry A(1)(d) and the spin-dependent structure function g1(d) of the deuteron at low values of x and Q**2.

The Compass collaboration Ageev, E.S. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Phys.Lett.B 647 (2007) 330-340, 2007.
Inspire Record 742118 DOI 10.17182/hepdata.48534

We present a precise measurement of the deuteron longitudinal spin asymmetry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1 GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.

1 data table

Measured values of A1 and G1 at mean values of X, Q**2 and Y.


Measurement of the spin structure of the deuteron in the DIS region.

The COMPASS collaboration Ageev, E.S. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Phys.Lett.B 612 (2005) 154-164, 2005.
Inspire Record 675838 DOI 10.17182/hepdata.48552

We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.

13 data tables

Measured values of A1 as a function of Q**2 at a mean X value of 0.0051.

Measured values of A1 as a function of Q**2 at a mean X value of 0.0079.

Measured values of A1 as a function of Q**2 at a mean X value of 0.0141.

More…