The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.
Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.
A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy $\sqrt{s}$ = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^{\gamma}| \lt 1.37$ and with a transverse energy $E_T^\gamma$ > 25 GeV. Jets are reconstructed in the rapidity range $|y^{jet}|$ < 4.4 and with a transverse momentum $p_T^{jet}$ > 20 GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-$p_T$ jet: $|y^{jet}| < 1.2, 1.2 \le |y^{jet}|$ < 2.8 and 2.8 $\le |y^{jet}|$ < 4.4. For each rapidity configuration the same-sign $(\eta^{\gamma}y^{jet}\ge 0)$ and opposite-sign $(\eta^{\gamma}y^{jet}<0)$ cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^{\gamma} \lt 45$ GeV, where the theoretical predictions overestimate the measured cross sections.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, |y(jet)|<1.2, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 1.2<=|y(jet)|<2.8, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 2.8<=|y(jet)|<4.4, eta(gamma)*y(jet)>=0.
A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 TO 1.37.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 TO 1.81.
Dijet events in photon-proton collisions in which there is a large pseudorapidity separation Delta eta > 2.5 between the two highest E_T jets are studied with the H1 detector at HERA. The inclusive dijet cross sections are measured as functions of the longitudinal momentum fractions of the proton and photon which participate in the production of the jets, x_pjet and x_gjet respectively, Delta eta, the pseudorapidity separation between the two highest E_T jets, and E_T^gap, the total summed transverse energy between the jets. Rapidity gap events are defined as events in which E_T^gap is less than E_T^cut, for E_T^cut varied between 0.5 and 2.0 GeV. The fraction of dijet events with a rapidity gap is measured differentially in Delta eta, x_pjet and x_gjet. An excess of events with rapidity gaps at low values of E_T^cut is observed above the expectation from standard photoproduction processes. This excess can be explained by the exchange of a strongly interacting colour singlet object between the jets.
The inclusive dijet cross section as a function of X(C=GAMMA).
The inclusive dijet cross section as a function of XP.
The inclusive dijet cross section as a function of the rapidity gap.
Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05
Differential ep cross section for dijet production as a function of the invariant mass of the two jets.
Differential ep cross section for dijet production as a function of the average transverse energy the two jets.
Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.
Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.
Rates of charged current events as a function of Q**2.
Rates of neutral current events as a function of Q**2.
Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.
The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.
The ET differential jet cross section in the virtual-photon CM frame.
The ET differential jet cross section in the virtual-photon CM frame.
The ET differential jet cross section in the virtual-photon CM frame.
Properties of the hadronic final state in photoproduction events with large transverse energy are studied at the electron-proton collider HERA. Distributions of the transverse energy, jets and underlying event energy are compared to $\overline{p}p$ data and QCD calculations. The comparisons show that the $\gamma p$ events can be consistently described by QCD models including -- in addition to the primary hard scattering process -- interactions between the two beam remnants. The differential jet cross sections $d\sigma/dE_T~{jet}$ and $d\sigma/d\eta~{jet}$ are measured.
No description provided.
Additional overall systematic error of 26 pct.
Additional overall systematic error of 26 pct.
The inclusive jet cross section in photoproduction has been measured as a function of transverse energy and pseudorapidity using the H 1 detector at the HERA electron-proton collider. The results are compared with leading order QCD calculations.
No description provided.
No description provided.
Inclusive jet cross sections have been measured in p¯p collisions at √s =546 and 1800 GeV, using the Collider Detector at Fermilab. The ratio of jet cross sections is compared to predictions from simple scaling and O(as3) QCD. Our data exclude scaling and lie (1.5–2.4)σ below a range of QCD predictions.
Additional systematic uncertainty +23,-26 pct.
Additional systematic uncertainty +-16 pct.
Additional systematic uncertainty +-0.22.