Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.
Corrected Sphericity distribution. Statistical errors only.
Corrected Aplanarity distribution. Statistical errors only.
Corrected Q3-Q2 distribution. Statistical errors only.
First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.
No description provided.
No description provided.
The reaction e+e−→e+e−π0π0 has been analyzed using 97 pb−1 of data taken with the Crystal Ball detector at the DESY e−e+ storage ring DORIS II at beam energies around 5.3 GeV. For the first time we have measured the cross section for γγ→π0π0 for π0π0 mvariant masses ranging from threshold to about 2 GeV. We measure an approximately flat cross section of about 10 nb for W=mπ0π0<0.8 GeV, which is below 0.6 GeV, in good agreement with a theoretical prediction based on an unitarized Born-term model. At higher invariant masses we observe formation of the f2(1270) resonance and a hint of the f0(975). We deduce the following two-photon widths: Γγγ(f2(1270))=3.19±0.16±0.280.29 keV and Γγγ(f0(975))<0.53 keV at 90% C.L. The decay-angular distributions show the π0π0 system to be dominantly spin 0 for W<0.7 GeV and spin 2, helicity 2 in the f2(1270) region, with helicity 0 contributing at most 22% (90% C.L.).
Statistical errors only.
Statistical errors only.
The NA24 experiment at CERN investigated inclusive γγ, π0π0, and γπ0 final states in the mass range between 4 and 9 GeV/c2 produced in π−p, π+p, and pp reactions at a c.m.-system energy s=23.7 GeV. The π0π0 cross sections agree well with expectations of the quark-parton model. For γπ0 production in π−p and pp reactions, a clear signal is observed and cross sections are shown. The production of γγ events was observed with a statistical significance of 2.9σ in π−p reactions. The cross section is in agreement with a higher-order QCD prediction.
Cross sections are averaged over the transverse momentum differences up to a value which is 1.10 GeV for all points except the first two which are 0.5 and 0.75 GeV respectively.
No description provided.
Maximum accepted transverse momentum difference of pi0 pair is 1 GeV. Inclusive cross section integrated over the total geometrical acceptance of the detector.
The analyzing power of π−p→π0n has been measured for pπ=301−625 MeV/c with a transversely polarized target, mainly in the backward hemisphere. The final-state neutron and a γ from the π0 were detected in coincidence with two counter arrays. Our results are compared with predictions of recent πN partial-wave analyses by the groups of Karlsruhe-Helsinki, Carnegie-Mellon University-Lawrence Berkeley Laboratory (CMU-LBL), and Virginia Polytechnic Institute (VPI). At the lower incident energies little difference is seen among the three analyses, and there is excellent agreement with our data. At 547 MeV/c and above, our data strongly favor the VPI phases, and disagree with Karlsruhe-Helsinki and CMU-LBL analyses, which are the source of the πN resonance parameters given in the Particle Data Group table.
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).
A proton-proton bremsstrahlung experiment has been carried out at TRIUMF using a 280-MeV polarized proton beam impinging on a liquid-hydrogen target. All three outgoing particles were detected: the higher-energy proton in a magnetic spectrometer, the lower-energy proton with plastic scintillators, and the photon in lead-glass Cherenkov detectors. The experiment shows the first unambiguous evidence for off-shell effects in the free nucleon-nucleon interaction, in that the analyzing powers disagree strongly with the predictions of the soft-photon approximation (which incorporates only on-shell information) but are consistent with the results of calculations using the Bonn and Paris potentials.
Estimated scale uncertainty is 1.5 pct.
Estimated scale uncertainty is 1.5 pct.
Estimated scale uncertainty is 1.5 pct.
We have measured the analyzing power in π+, π−, and KS0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high xF and also persist into the hard-scattering region for KS0 and π+. A zero value of the analyzing power was observed for π− production.
No description provided.
No description provided.
No description provided.
A search for the 0 + → 2 + neutrinoless double-beta decay of 76 Ge into the first excited state of 76 Se has been carried out using a coincidence technique between Ge and NaI detectors. Since the expected number of counts is very small and mixed with a continuous background of natural radioactivity, special care has been taken to maintain the good energy resolution of the detectors. As a consequence, the experimental data display, after 6207 h statistical time, a coincidence signal of 19.3 ± 5.8 counts, between an energy deposition of 1484.0 ± 0.3 keV in the Ge detectors and 561 ± 10 keV in the NaI detectors. Both Ge and NaI energies are within the experimental errors, compatible with the expected values. No other unidentified coincidence signal has been found in the full Ge-NaI energy matrix, and no similar γγ cascade has been found within our background. Even if the low statistics does not completely rule out the possibility of a statistical fluctuation, this result should encourage further experiments with improved sensitivities.
SE76* IS IN 2+ EXGITED STATE.
The study of the J ψ transverse momentum distribution in oxygen-uranium reactions at 200 GeV/nucleon shows that 〈 P T 〉 and 〈 P T 2 〉 increase with the transverse energy of the reaction. Muon pairs in the mass continuum do not exhibit the same behaviour. The comparison of the J ψ production rates in central and peripheral collisions shows a significant diminution for low P T central events.
Two parametrization of the D(SIG)/D(PT) are used: first is : PT*exp(-SLOPE*PT**CONST(C=PT)) and second is : PT*exp(-2*MT/CONST(C=MT)).
D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).
D(SIG)/D(PT) is parameterized as PT*exp(-SLOPE*PT**CONST).
Using data onvp and\(\bar vp\) charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions ofW2 andQ2. The analysis is based on ∼20000 events with incidentv and ∼10000 events with incident\(\bar v\). In addition to the known dependence of the average multiplicity onW2 a weak dependence onQ2 for fixed intervals ofW is observed. ForW>2 GeV andQ2>0.1 GeV2 the average multiplicity of charged hadrons is well described by〈n〉=a1+a2ln(W2/GeV2)+a3ln(Q2/GeV2) witha1=0.465±0.053,a2=1.211±0.021,a3=0.103±0.014 for thevp anda1=−0.372±0.073,a2=1.245±0.028,a3=0.093±0.015 for the\(\bar vp\) reaction.
No description provided.
No description provided.
No description provided.