The invariant cross section for the inclusive production of π+, π−, K+, K−, p, and p¯ is presented for proton-nucleon interactions at plab=28.5 GeV/c. Beryllium, titanium, and tungsten targets were used and the yields were extrapolated to A=1 using the power law σ∼Aα. The exponent α increases with pT, except for protons. The pT dependence of the cross sections is compared with a simple fireball model.
No description provided.
No description provided.
Using the solenoidal magnetic detector PLUTO, we have measured the total cross section for e + e − annihilation into hadrons. Results are presented for center of mass energies between 3.6 and 4.8 GeV, and in the regions of the J ψ (3.1) and ψ(3.7) resonances. We also present results for the 2 prong cross section in the energy range 3.6 to 4.8 GeV.
No description provided.
NUMBERS MEASURED OFF PUBLISHED FIGURE. RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
THE DATA GIVEN HERE AT 9.3 GEV AND ABOVE ARE REPORTED IN C. BERGER ET AL., PL 104B, 79 (1981). THE 12.0 AND 30 GEV DATA WERE TAKEN AT PETRA.
No description provided.
No description provided.
We report on inclusive production of J ψ (3.1)-mesons observed in e + e − -annihilation in the energy range s = 4.0–5.0 GeV . After substraction of the radiative tail of the ψ(3.7) direct production of the J ψ (3.1) is found to be in the order of 0.1% of the total hadronic cross section. No enhancements are seen at s = 4.03 GeV and 4.4 GeV. The level is in agreement with expectations from violation of the Zweig-rule.
THIS IS 0.13 PCT OF THE TOTAL HADRONIC CROSS SECTION.
The Split Field Magnet facility at the CERN ISR has been used to measure inclusive resonance production in inelastic p-p collisions at a c.m. energy of 53 GeV. The mass spectrum of pairs of oppositely charged hadrons shows a strong correlation, which can be explained as a consequence of dominant vector meson production, accounting for more than 60% of all pions and kaons produced.
No description provided.
No description provided.
No description provided.
Annihilation of e + e − into final states with a single electron has been studied with the PLUTO detector at the DORIS storage ring at CMS energies from 3.6 to 5 GeV. In the sample of 4-prong events without any detected photon we observe 21 events which we assign to the reaction e + e − → τ + τ − → νν e + νϱ 0 π . We obtain a branching ratio for τ + → νϱ 0 π + of 0.050 ± 0.015 with an overall systematic uncertainty of 30%. The data are consistent with the ϱπ coming from an A 1 meson.
No description provided.
An experiment using the PLUTO detector has observed the formation of a narrow, high mass, resonance in e + e − annihilations at the DORIS storage ring. The mass is determined to be 9.46±0.01 GeV which is consistent with that of the Upsilon. The gaussian width σ is observed as 8±1 MeV and is equal to the DORIS energy resolution. This suggests that the resonance is a bound state of a new heavy quark-antiquark pair. An electronic width Γ ee =1.3±0.4 keV was obtained. In standard theoretical models, this favors a quark charge assignment of 1 3 .
No description provided.
None
NUMERICAL VALUES MEASURED OFF GRAPH IN PREPRINT.
PRELIMINARY DATA.
We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.
None
No description provided.