We have searched for resonances in the reaction e+e−→hadrons, γγ, μμ, and ee, in the energy range 39.79
No description provided.
Cross sections for the reactionse+e−→e+e− (Bhabha scattering) ande+e−→γγ are measured for center-of-mass (c.m.) energies\(\sqrt s \) between 12.0 and 34.6 GeV. The results agree with the predictions of Quantum Electrodynamics (QED) and the cut-off parameters are determined. From Bhabha scattering at the highest energy,\(\left\langle {\sqrt s } \right\rangle= 34.6 GeV\), the 1 δ limits 0.12
Total cross sections.
Angular distribution.
Angular distribution.
The differential cross sections of the reactions e + e − → e + e − and e + e − → λλ are measured at energies between 33.0 and 36.7 GeV. The results agree with the predictions of quantum electrodynamics. A comparison with the standard model of electroweak interaction yields sin 2 θ W = 0.25 ± 0.13.
No description provided.
No description provided.
The differential cross section for the reaction e + e − → γγ has been measured in the CMS energy range between 9.4 and 31.6 GeV. The results are found to be in agreement with the predictions of quantum electrodynamics up to momentum transfers- q 2 of 900 GeV 2 . The data set lower limits of about 40 GeV on QED cut-off parameters. We have searched for the decay υ (9.46) → γγ and obtain an upper limit Γ ( υ → γγ )/ Γ ( υ → all) < 1.4% (95% c.l.).
No description provided.