COMPARISON OF SOME INCLUSIVE CHARACTERISTICS OF anti-p p INTERACTIONS AT 22.4-GeV/c MOMENTUM WITH THE PREDICTIONS OF THE QUARK - PARTON MODEL

Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Z.Phys.C 5 (1980) 17-26, 1980.
Inspire Record 144655 DOI 10.17182/hepdata.71257

None

7 data tables

No description provided.

DATA FOR EVNENT WITHOUT PAIRS FROM INTERFIERENCE REGION - YF 27, 1556.

No description provided.

More…

A Study of the Structure of the Events With the Multiparticle Diffraction Dissociation in $K^- p$ Exclusive Reactions at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Arestov, Yu.I. ; Bogolyubsky, M.Yu. ; Levitsky, M.S. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 353, 1980.
Inspire Record 144636 DOI 10.17182/hepdata.17869

None

22 data tables

292+-7 MUB - CORRECTED VALUE FOR FIRST REACTION (SLOW PROTONS). M(P 4PI) <= 3.5 GEV FOR REACTIONS WITH FOUR PIONS.

No description provided.

No description provided.

More…

The Real Part of the Forward Proton Proton Scattering Amplitude Measured at the CERN Intersecting Storage Rings

Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 66 (1977) 390-394, 1977.
Inspire Record 110800 DOI 10.17182/hepdata.27584

The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.

2 data tables

No description provided.

USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.


A Measurement of the Cross-Section of the Reaction p p --> n Delta++ (1232) at ISR Energies

Kwak, N. ; Nagy, E. ; Regler, M. ; et al.
Phys.Lett.B 62 (1976) 359-362, 1976.
Inspire Record 108757 DOI 10.17182/hepdata.27678

A measurement of the cross section of the charge-exchange reaction pp→ Δ ++ (1232)n at √ s = 23, 31 and 45 GeV at the CERN-ISR is reported. The energy dependence continues to follow a power law p lab − n with n = 1.94 ± 0.03 indicating dominance of one-pion exchange at the lowest ISR energy; there is some evidence for deviation from this at the higher ISR energies.

3 data tables

No description provided.

No description provided.

No description provided.