Observation of three narrow neutral mesons in the vicinity of 950 mev

Cheshire, D.L. ; Jacobel, R.W. ; Lamb, R.C. ; et al.
Phys.Rev.Lett. 28 (1972) 520-523, 1972.
Inspire Record 75535 DOI 10.17182/hepdata.21441

In a scintillation-counter experiment, we have observed two narrow, neutral mesons in addition to the well-established η′ (958) in the reaction π−p→M0n at 2.4 GeVc. We observe a mass of 940.5 ± 1.7 MeV, Γ<10.4 MeV for the M0(940), and a mass of 962.9 ± 1.7 MeV, Γ<5.9 MeV for the δ0.

1 data table

CROSS SECTION OVERALL UNCERTAINTY (APART FROM ETA PRODUCTION) ABOUT 30 PCT.


Vector-meson electroproduction at high q-squared

Ahrens, L. ; Berkelman, Karl ; Brown, G.S. ; et al.
Phys.Rev.Lett. 31 (1973) 131-133, 1973.
Inspire Record 84487 DOI 10.17182/hepdata.47133

We have measured ρ0, ω (combined) and ϕ electroproduction over a range of virtual-photon four-momentum Q2 from 0.4 to 2.2 GeV2 and for photon energies ν from 2.7 to 8.6 GeV. We find that the slope of the t (momentum transfer) dependence of the ρ0 and ω forward peak decreases with increasing Q2 to less than half of the photoproduction slope.

1 data table

The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.


Comparisons of Deep Inelastic e p and e n Cross-Sections

Bodek, A. ; Breidenbach, M. ; Dubin, D.L. ; et al.
Phys.Rev.Lett. 30 (1973) 1087, 1973.
Inspire Record 83716 DOI 10.17182/hepdata.21415

Cross sections for inelastic scattering of electrons from hydrogen and deuterium were measured for incident energies from 4.5 to 18 GeV, at scattering angles of 18°, 26°, and 34°, and covering a range of squared four-momentum transfers up to 20 (GeVc)2. Neutron cross sections were extracted from the deuterium data using an impulse approximation. Comparisons with the proton measurements show significant differences between the neutron and proton cross sections.

1 data table

Axis error includes +- 1/1 contribution (DUE TO ERRORS IN ABOVE CORRECTIONSFOR DEAD-TIME LOSSES, INEFFICIENCIES IN E- IDENTIFICATION).


LARGE ANGLE PROTON AND PION PRODUCTION IN DEEP INELASTIC ELECTRON SCATTERING

Ahrens, L. ; Berkelman, Karl ; Brown, G.S. ; et al.
Phys.Rev.D 9 (1974) 1894, 1974.
Inspire Record 80405 DOI 10.17182/hepdata.47134

We have measured ep, eπ+, and eπ− coincidences for scattered electrons in the range Q2=0.4 to 2.2 GeV2 and W=2 to 4 GeV. We find (a) that vector-meson production decreases with Q2 more rapidly than does the total virtual-photon-plus-proton cross section, more rapidly even than the prediction of simple vector dominance, (b) that the slope of the t distribution in ρ and ω production becomes flatter with increasing Q2 and seems to be at least approximately a function of the single variable xρ=(Q2+mρ2)2Mν, (c) that the fraction of final states containing a proton decreases with increasing Q2, (d) that in the central region of longitudinal momenta the inclusive π+ yield seems to increase relative to the π− yield as Q2 increases, and (e) that the average transverse momentum of π− is greater than of π+ in the central region of longitudinal momenta.

28 data tables

No description provided.

The data with (C=Q=RHO+OMEGA) are obtained by excluding the contribution from RHO and OMEGA production.

No description provided.

More…

The Ratio of Deep - Inelastic e-n to e-p Cross-Sections in the Threshold Region

Bodek, A. ; Dubin, D.L. ; Elias, J.E. ; et al.
Phys.Lett.B 51 (1974) 417-420, 1974.
Inspire Record 91646 DOI 10.17182/hepdata.27946

We report measurements of the ratio of the deep-inelastic electron-neutron to electron-proton differential cross sections in the threshold ( ω <3) region. The ratio was found to scale and to decrease monotically with decreasing ω . No violation of the quark model lower bound of 0.25 was observed in the ratio.

1 data table

DATA ARE AVERAGED THROUG AVAILABLE KINEMATIC REGION.


Extraction of the Structure Functions and R=Sigma-L/Sigma-T from Deep Inelastic e p and e d Cross-Sections

Riordan, E.M. ; Bodek, A. ; Breidenbach, Martin ; et al.
SLAC-PUB-1634, 1975.
Inspire Record 100687 DOI 10.17182/hepdata.591

None

103 data tables

No description provided.

No description provided.

No description provided.

More…

Precision Comparison of Inelastic electron and Positron Scattering from Hydrogen

Fancher, D.L. ; Caldwell, David O. ; Cumalat, John P. ; et al.
Phys.Rev.Lett. 37 (1976) 1323, 1976.
Inspire Record 4108 DOI 10.17182/hepdata.21910

Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.

1 data table

No description provided.


Inclusive Electron Production in Multiprong Events Produced by $e^+ e^-$ Annihilation

Feller, J.M. ; Litke, A. ; Madaras, R. ; et al.
Phys.Rev.Lett. 40 (1978) 1677, 1978.
Inspire Record 129962 DOI 10.17182/hepdata.38080

We have measured inclusive electron production in multiprong events produced by e+e− annihilation in the center-of-mass energy range 3.9-7.4 GeV. We find the electron momentum spectra are consistent with the electrons coming mainly from decays of charmed particles, with a smaller contribution from decays of the τ lepton. From our data we calculate the average branching ratio for charmed particles to decay into an electron plus additional particles to be (8.2±1.9)%.

1 data table

No description provided.


Experimental Studies of the Neutron and Proton Electromagnetic Structure Functions

Bodek, A. ; Breidenbach, Martin ; Dubin, D.L. ; et al.
Phys.Rev.D 20 (1979) 1471-1552, 1979.
Inspire Record 140185 DOI 10.17182/hepdata.4325

We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.

100 data tables

No description provided.

No description provided.

No description provided.

More…

CROSS-SECTIONS AND POSSIBLE RESONANCES IN P ANTI-P ELECTROPRODUCTION

Gibbard, B.G. ; Ahrens, L.A. ; Berkelman, Karl ; et al.
Phys.Rev.Lett. 42 (1979) 1593-1596, 1979.
Inspire Record 146169 DOI 10.17182/hepdata.20810

The cross section for the fully constrained reaction ep→eppp¯ has been determined as a function of the electroproduction variables Q2 and s, in the range 0.7<Q2<3 GeV2 and 8<s<16 GeV2. Evidence is presented and cross-section estimates are made for resonances in the final-state p¯p system.

2 data tables

The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.

The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.