Showing 10 of 132 results
Quasi-free photoproduction of eta-mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta-mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasi-free n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta-production off the neutron shows a pronounced bump-like structure at W=1.68 GeV (E_g ~ 1 GeV), which is absent for the proton.
Data on elastic scattering of 96 MeV neutrons from Fe56, Y89, and Pb208 in the angular interval 10−70° are reported. The previously published data on Pb208 have been extended, as a new method has been developed to obtain more information from data, namely to increase the number of angular bins at the most forward angles. A study of the deviation of the zero-degree cross section from Wick's limit has been performed. It was shown that the data on Pb208 are in agreement with Wick's limit while those on the lighter nuclei overshoot the limit significantly. The results are compared with modern optical model predictions, based on phenomenology and microscopic nuclear theory. The data on Fe56, Y89, and Pb208 are in general in good agreement with the model predictions.
Measured differential cross section for elastic scattering on the FE target.
Measured differential cross section for elastic scattering on the Y target.
Measured differential cross section for elastic scattering on the PB target.
Beam asymmetry and differential cross section for the reaction gamma+p->eta+p were measured from production threshold to 1500 MeV photon laboratory energy. The two dominant neutral decay modes of the eta meson, eta->2g and eta->3pi0, were analyzed. The full set of measurements is in good agreement with previously published results. Our data were compared with three models. They all fit satisfactorily the results but their respective resonance contributions are quite different. The possible photoexcitation of a narrow state N(1670) was investigated and no evidence was found.
Measured beam asymmetry at photon energy 810 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 870 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 929 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 990 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1051 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1105 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1170 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1225 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1278 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1330 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1381 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1424 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 1472 MeV as a function of the ETA centre of mass angle.
Differential cross section for photon energy 714 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 732 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 749 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 766 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 785 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 801 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 818 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 835 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 863 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 896 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 928 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 962 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 992 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1024 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1055 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1084 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1115 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1145 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1174 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1203 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1232 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1261 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1289 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1317 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1344 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1371 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1399 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1425 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1450 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross section for photon energy 1477 MeV as a function of the cosine of the ETA centre of mass angle.
Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.
Differential cross section for indicent photon energy 675 MeV.
Differential cross section for indicent photon energy 725 MeV.
Differential cross section for indicent photon energy 775 MeV.
Differential cross section for indicent photon energy 825 MeV.
Differential cross section for indicent photon energy 875 MeV.
Differential cross section for indicent photon energy 925 MeV.
Differential cross section for indicent photon energy 975 MeV.
Differential cross section for indicent photon energy 1025 MeV.
Differential cross section for indicent photon energy 1075 MeV.
Differential cross section for indicent photon energy 1125 MeV.
Differential cross section for indicent photon energy 1175 MeV.
Differential cross section for indicent photon energy 1225 MeV.
Differential cross section for indicent photon energy 1275 MeV.
Differential cross section for indicent photon energy 1325 MeV.
Differential cross section for indicent photon energy 1375 MeV.
Differential cross section for indicent photon energy 1425 MeV.
Differential cross section for indicent photon energy 1475 MeV.
Differential cross section for indicent photon energy 1525 MeV.
Differential cross section for indicent photon energy 1575 MeV.
Differential cross section for indicent photon energy 1625 MeV.
Differential cross section for indicent photon energy 1675 MeV.
Differential cross section for indicent photon energy 1725 MeV.
Differential cross section for indicent photon energy 1775 MeV.
Differential cross section for indicent photon energy 1825 MeV.
Differential cross section for indicent photon energy 1875 MeV.
Differential cross section for indicent photon energy 1925 MeV.
Differential cross section for indicent photon energy 1975 MeV.
Differential cross section for indicent photon energy 2025 MeV.
Differential cross section for indicent photon energy 2075 MeV.
Differential cross section for indicent photon energy 2125 MeV.
Differential cross section for indicent photon energy 2175 MeV.
Differential cross section for indicent photon energy 2225 MeV.
Differential cross section for indicent photon energy 2275 MeV.
Differential cross section for indicent photon energy 2325 MeV.
Differential cross section for indicent photon energy 2375 MeV.
Differential cross section for indicent photon energy 2425 MeV.
Differential cross section for indicent photon energy 2475 MeV.
Differential cross section for indicent photon energy 2525 MeV.
Differential cross section for indicent photon energy 2575 MeV.
Differential cross section for indicent photon energy 2625 MeV.
Differential cross section for indicent photon energy 2675 MeV.
Differential cross section for indicent photon energy 2725 MeV.
Differential cross section for indicent photon energy 2775 MeV.
Differential cross section for indicent photon energy 2825 MeV.
Differential cross section for indicent photon energy 2875 MeV.
Differential and total cross-sections for photoproduction of gamma proton to proton pi0 omega and gamma proton to Delta+ omega were determined from measurements of the CB-ELSA experiment, performed at the electron accelerator ELSA in Bonn. The measurements covered the photon energy range from the production threshold up to 3GeV.
Differential cross section as a function of the OMEGA angle.
Differential cross section as a function of the OMEGA angle.
Differential cross section as a function of the PI0 angle.
Differential cross section as a function of the PI0 angle.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Differential cross section as a function of T-TMIN, the squared four momentum transfer to the P PI0 system.
Slope parameter of the DSIG/DT distribution as a function of energy.
Total cross section before and after the subtraction of the (DELTA+ OMEGA) contribution as a function of energy.
Total cross section for the final state DELTA+ OMEGAas a function of energy.
Differential cross section as a function of the (P PI0) mass.
Differential cross section as a function of the (P PI0) mass.
Differential cross section as a function of the (P PI0) mass.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, and.
The quasi-free pn->dphi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal proton beam incident on a deuterium cluster-jet target and detecting a fast deuteron in coincidence with the K+K- decay of the phi-meson. The energy dependence of the total and differential cross sections are extracted for excess energies up to 80 MeV by determining the Fermi momentum of the target neutron on an event-by-event basis. Though these cross sections are consistent with s-wave production, the kaon angular distributions show the presence of p waves at quite low energy. Production on the neutron is found to be stronger than on the proton but not by as much as for the eta-meson.
Differential cross section dependence on the angle of the K+ from the PHI decay in the PHI rest frame.
Differential cross section dependence on the polar angle of the PHI in the overall rest frame.
Total cross section as a function of the excess energy.
The pp->pp phi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal beam and ANKE facility. Total cross sections have been determined at three excess energies epsilon near the production threshold. The differential cross section closest to threshold at epsilon=18.5 MeV exhibits a clear S-wave dominance as well as a noticeable effect due to the proton-proton final state interaction. Taken together with data for pp omega-production, a significant enhancement of the phi/omega ratio of a factor 8 is found compared to predictions based on the Okubo-Zweig-Iizuka rule.
K+ K- invariant mass distribution.
Total cross sections.
Differential decay distribution of the K+ in the rest frame of the PHI-meson w.r.t. the beam.
Differential cross section as a function of the proton momentum in the P-P rest frame.
Polar angle distribution of the PHI-meson in the overall CMS system.
Angular distribution of the proton in the rest system of the final protons w.r.t. the beam.
Angular distribution of the proton in the rest system of the final protons w.r.t. the direction of the PHI-meson momentum.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.57 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.41 GeV.
Cross sections for W = 1.11 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 157.5 deg.
Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.527, 1.577 and 1.627 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.677, 1.728 and 1.779 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.829, 1.879 and 1.930 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 1.980, 2.029 and 2.079 GeV. The errors shown are combined statistical and systematic.
Differential cross sections for ETAPRIME photoproduction on the proton at photon energies 2.129, 2.178 and 2.227 GeV. The errors shown are combined statistical and systematic.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.