We report on a high statistics measurement of the total and differential cross sections of the process gamma gamma -> pi^+ pi^- in the pi^+ pi^- invariant mass range 0.8 GeV/c^2 < W < 1.5 GeV/c^2 with 85.9 fb^{-1} of data collected at sqrt{s}=10.58 GeV and 10.52 GeV with the Belle detector. A clear signal of the f_0(980) resonance is observed in addition to the f_2(1270) resonance. An improved 90% confidence level upper limit Br.(eta'(958) -> pi^+ pi^-) < 2.9 x 10^{-3} is obtained for P- and CP-violating decay of the eta'(958) meson using the most conservative assumption about the interference with the background.
Total cross section.
No description provided.
No description provided.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
A high precision study of the process gamma gamma -> p p-bar has been performed using a data sample of 89/fb collected with the Belle detector at the KEKB e+e- collider. The cross section of p p-bar production has been measured at two-photon center-of-mass (c.m.) energies between 2.025 and 4.0 GeV and in the c.m. angular range of |cos(theta^*)|<0.6. Production of gamma gamma -> eta_c -> p p-bar is observed and the product of the two-photon width of the eta_c and its branching ratio to p p-bar is determined.
Measured cross section for GAMMA GAMMA --> PBAR P in the angular region ABS(COS(THETA)) < 0.6.
Measured differential cross sections versus COS(THETA) for the W ranges 2.075 to 2.5, 2.5 to 3.0 and 3.0 to 4.0 GeV.
Measured differential cross sections versus COS(THETA) for the W ranges 2.075 to 2.1, 2.1 to 2.2 and 2.2 to 2.3 GeV.
Muon pair production in the process e+e- -> e+e-mu+mu- is studied using the data taken at LEP1 (sqrt(s) \simeq m_Z) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb^{-1}. The QED predictions have been tested over the whole Q^2 range accessible at LEP1 (from several GeV^2/c^4 to several hundred GeV^2/c^4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F_2^\gamma. Azimuthal correlations are used to obtain information on additional structure functions, F_A^\gamma and F_B^\gamma, which originate from interference terms of the scattering amplitudes. The measured ratios F_A^\gamma/F_2^\gamma and F_B^\gamma/F_2^\gamma are significantly different from zero and consistent with QED predictions.
The measured QED photon structure function at Q**2 = 12.5 GeV for the combine SAT and STIC data.
The measured QED photon structure function at Q**2 = 120 GeV for the combine SAT and STIC data.
Ratio of the structure functions FA and FB to F2.
No description provided.
Low x domain.
Using data from the TPC/Two-Gamma experiment at the SLAC e+e− storage ring PEP, a C=+1 resonance has been observed in the π+π−π0γ final state resulting from the fusion of one nearly real and one quite virtual photon. The actual decay channel is probably π+π−π0π0, where one final-state photon is not detected, and the mass of the fully reconstructed state would be approximately 1525 MeV. A four-pion decay mode in turn implies that the resonance has even isospin. The nonobservation of this R(1525) when both initial-state photons are nearly real suggests a spin-1 assignment. Since the large measured value of the product of the branching ratio into π+π−π0π0 and the γγ coupling makes it unlikely that this state is the mostly s¯s f1(1510), its interpretation may lie outside of conventional meson spectroscopy. There is a second, less-significant enhancement observed in the same reaction at a four-pion mass centered around 2020 MeV.
No description provided.
Coupling parameter times the effective form factor.
We report a measurement of the e+e−→e+e−pp¯π+π− process with the TPC/Two-Gamma facility at the PEP e+e− storage ring at SLAC. Forty-five pp¯π+π− events were identified in data corresponding to an integrated e+e− luminosity of 142 pb−1. The cross section for γγ→pp¯π+π− is given both as a function of the γγ center-of-mass energy Wγγ, with Wγγ between 2.5 and 5.5 GeV, and as a function of the in variant mass squared q2 of one of the photons, with −q2<7 GeV2. This cross section falls much less rapidly with Wγγ than does the cross section for a similar process, γγ→pp¯. No Δ0Δ¯0 production is observed, and only a small fraction of the events at low Wγγ is consistent with γγ→Δ++Δ¯−−, Δ++p¯π−, or Δ¯−−pπ+. In an expanded search through the same data, four events compatible with either ΛΛ¯(Λ→pπ−) or Σ0Λ¯(Σ0→Λγ) production were found.
Statistical errors only.
Data read from graph.
Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.
UNTAGGED DATA.
TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.
UNTAGGED DATA.
We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16<Q2<1.6 (GeV/c)2].
Data read from graph in preprint. Statistical errors only.
Data read from graph. Statistical errors only.
Data read from graph. Statistical errors only.
The structure function F2γ for a quasireal photon has been measured in the reaction ee→eeX for Q2 in the range 0.2<Q2<7 GeV2, by use of 9200 multihadron events obtained with the TPC/Two-Gamma detector at the SLAC storage ring PEP. The data have been corrected for detector effects by a regularized unfolding procedure and are presented as F2γ(x,Q2). The structure function shows scaling in the region 0.3<Q2<1.6 GeV2, x<0.3, and rises for higher Q2 and x>0.1. Below Q2=0.3 GeV2, scaling breaks down in accordance with the finite cross-section bound for real photons.
Data read from graph.
Data read from graph.
Data read from graph.