The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.
No description provided.
RESONANCE REGION. UNSMEARING CORRECTION APPLIED, GLAUBER CORRECTION NEGLIGIBLE.
HIGHER ENERGY CROSS SECTIONS, IN 200 MEV BINS. OVERALL 3 PCT SYSTEMATIC ERROR IN ADDITION TO QUOTED STATISTICAL ERRORS. NEUTRON/PROTON CROSS SECTION RATIO HAS MEAN VALUE OF 0.94 +- 0.01.
Measurements have been made of the polarization of the recoil proton in the process γ p → π o p for photon energies of 850 - 1250 MeV and centre-of-mass angles of 80° - 125°. The results, which are to a typical accuracy of ±0.09, show a marked disagreement with previous phenomenological analyses above 1000 MeV.
No description provided.
No description provided.
No description provided.
A 12 event/μb bubble chamber experiment on K − p interactions at 3.95 GeV/ c yielded 1212 events including systems with strangeness S = −2. Results concerning cascade resonances with masses less than 2000 MeV are reported; in particular a determination of the mass and width of the Ξ o 1530 and an interpretation of the mass region (1700–/) 2000) MeV.
No description provided.
The polarized target asymmetry parameter has been measured for single π o photoproduction from hydrogen at 4 GeV and values of four-momentum transfer squared between −0.15 (GeV/ c ) 2 and −1.8 (GeV/ c ) 2 .
Axis error includes +- 0.0/0.0 contribution (?////).
Based on 150 000 photographs taken at the ZGS with the 30 inch deuterium-filled chamber we present an analysis of the elastic p d scattering reaction. Due to unrecoreded small deuteron recoils we were only able to measure the elastic cross section in the four-momentum region | t | > 0.03 (GeV/ c ) 2 . Extrapolation towards small | t | by two different methods gave us two compatible estimates of the total elastic cross section. The differential cross section was analyzed by means of the Glauber formalism both with and without the effects due to the D-wave part of the deuteron wave function. The differential cross sections of np at 5.4 GeV/ c and pn deduced from our data were compared and exhibit a crossover phenomenon.
CALCULATED USING TOTAL ELASTIC SIG(-T > 0.03 GEV**2) = 7.2 +- 0.4. THE SMALL ANGLE SCATTERING APPROXIMATION HOLDS: D(SIG)/DOMEGA(RF=LAB) = (P**2/PI)*D(SIG)/DT.
INTEGRATED CROSS SECTION USING EITHER EXPONENTIAL EXTRAPOLATION OR GLAUBER MODEL FIT FOR -T < 0.03 GEV**2.
The polarization parameter P(t) for the reaction π−p→π0n has been measured at 3.5 and 5.0 GeV/c over the range 0.2<~−t<~1.8 (GeV/c)2. The two γ rays from the π0 decay were detected in a large lead-glass hodoscope. The results agree with the positive polarization values found in earlier Argonne National Laboratory data at −t<0.35 (GeV/c)2. P(t) drops to a small value near t=−0.6 (GeV/c)2 and remains the same out to t=−1.8 (GeV/c)2.
DATA POINTS MEASURED FROM SMALL GRAPH.
The total hadronic photoabsorption cross sections of a number of nuclei (C, Al, Cu, Nb, Sn, Ta, Pb) have been studied in detail using a tagged photon beam over the energy range 1.7-4 GeV. The results are described, and compared with models of photoabsorption.
STATISTICAL ERRORS. MEAN CROSS SECTIONS FOR EACH OF THE TWO ELECTRON BEAM ENERGIES OF 3.5 AND 4.6 GEV ARE ALSO GIVEN.
A-EFFECTIVE/A, USING SIG(GAMMA P) = 137 MUB AND SIG(GAMMA N) = 126 MUB. STATISTICAL ERRORS.
A-EFFECTIVE/A, USING SIG(GAMMA P) = 129 MUB AND SIG(GAMMA N) = 123 MUB. STATISTICAL ERRORS.
Full angular distributions of the polarization parameter in elastic K+p scattering at 1.37, 1.45, 1.60, 1.71, 1.80, 1.89, 2.11, and 2.31 GeV/c are presented. These data were obtained in an experiment at the Zero Gradient Synchrotron using a polarized proton target with arrays of scintillation and Čerenkov counters to detect the scattered particles.
No description provided.
No description provided.
No description provided.
We have studied K+π− elastic scattering in the reaction K+p→K+π−Δ++ at 12 GeVc and in the Kπ mass interval 800 to 1000 MeV. We have performed a partial-wave analysis in this Kπ mass region, dominated by the p-wave resonance K*(890), in order to obtain information about the s-wave amplitude. We have extrapolated the K+π− moments, the total cross section, and p-wave cross section to the pion pole. The p-wave cross section is close to the unitarity limit and can be described by a Breit-Wigner resonance form, with parameters M=896±2 MeV and Γ=47±3 MeV. We then perform an energy-independent phase-shift analysis of the extrapolated moments and total cross section using this Breit-Wigner form for the p wave and a previously determined small negative phase shift for the I=32s wave. For the I=12s-wave phase shift we find the so called "down" solution, which has a phase shift that rises slowly from 20° at M(Kπ)=800 MeV to 60° at M(Kπ)=1000 MeV. The energy dependence of this phase shift is well described by an effective range form, with a scattering length a01=−0.33±0.05 F. The so-called "up" solution is eliminated or has large χ2 everywhere except for two overlapping mass intervals at M(Kπ)=890 and 900 MeV. However, due to limited statistics, we expect two solutions for the s wave very near the mass where the p wave is resonant. We then perform an energy-dependent partial-wave analysis and find again no evidence for an s-wave resonance although, due to limited statistics, we could not exclude one at 890 MeV with Γ<7 MeV.
Extrapolation.
Extrapolation. Initial K+ PI- system in P-wave state.
We have done a JP analysis of the low-mass π+ω system, using the reaction π+p→π+ωp at 7.1 GeV/c. We find that the B resonance cannot be JP=0− and must belong to the unnatural-parity series (1+, 2−, 3+,...), regardless of the amount of interference between the B and the background. If we assume that the B does not interfere with the background, we find that all JP states for the resonance are rejected except for 1+. Even if interference effects are allowed in the analysis, a good fit with reasonable parameters is obtained only with the 1+ hypothesis for the B meson. In an appendix, we give relevant theoretical formulas appropriate for a πω system with any number of spin-parity states and arbitrary degrees of interference among them.
TAKING INTO ACCOUNT 0- AND 1+ SMOOTH BACKGROUND UNDER THE B MESON. EVENTS WITH 1.08 < M(PI+ OMEGA) < 1.38 GEV.