The total cross section for electron-positron annihilation into three or more hadrons has been measured for centre of mass energies between 1.4 and 2.0 GeV. The data were obtained at ADONE by the BB̄ experiment.
NOTE THAT THIS MEASUREMENT OF R EXCLUDES TWO-BODY FINAL STATE EVENTS. RADIATIVE CORRECTIONS WERE APPLIED.
A dipion enhancement of mass 1.59 GeV and width 0.23 GeV is observed in the channel γp→π + π − p. The spin-parity of the enhancement is consistent with being 1 − .
No description provided.
Virtual photoproduction of J/ ψ mesons has been measured for 280 GeV muon iron interactions in an iron/scintillator calorimeter target. The J/ψ's were identified by their decay into muon pairs. 315 events were observed, about half of which were elastic. The t , Q 2 and v distributions of these elastic events are presented. The v dependence is measured between 40 and 180 Mev and compared with lower energy photoproduction results. The Q 2 dependence is compared with the predictions of the vector dominance model.
TPRIME DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL Q2 AND NU WITH 280 GEV MUON BEAM.
NORMALIZED Q**2 DISTRIBUTION OF ELASTIC J/PSI EVENTS FOR ALL NU AND T WITH 280 GEV MUON BEAM.
EXTRAPOLATION OF Q**2 AND T DEPENDENCE TO CALCULATE D(SIG)/DT AT Q**2=0 AND T=0 FOR ELASTIC J/PSI PHOTOPRODUCTION PER NUCLEON.
The elastic photoproduction of four pions has been studied at incident photon energies between 2.8 and 4.8 GeV. Production cross-sections are presented and an analysis of the angular decay correlations is also described, indicating a large 1− contribution in both final states, π+ π− π+ π− and π+ π− π0 π0. A quantitative understanding of these and other available 4π photoproduction data in terms of the ρ′(∼1.2GeV) and the ρ′(∼1.6) is presented.
WITH OMEGA/RHO DECAY PARAMETRIZATION.
WITH OMEGA/A1 DECAY PARAMETRIZATION.
Measurements of the photoproduction processes γρ→ρ+n and γρ→ρ-Δ++ (1236) are reported in the energy range 2.8 to 4.8 GeV. The data show shrinkage of the differential cross section in this energy region for the process γρ→ρ-Δ++ (1236); no shrinkage is observed for the ρ+n process. The energy dependences of the ρ+n and ρ-Δ++ (1236) total cross sections are much steeper than current model prediction. The ρ spin density matrices for each process are also presented.
No description provided.
SLOPE AND INTERCEPT OF D(SIG)/DT.
No description provided.
We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.
.
.
We have studied backward meson and baryon production in π−p→nπ+π− at 8 GeV/c using a streamer chamber triggered by the detection of the interaction of the neutron in thick-plate optical spark chambers. Our data sample of 866 events is dominated by the quasi-two-body final states Δ−(1232)π+, nρ0, and nf0. We study the differential and total backward cross sections for these states and the decay angular distributions of the resonances. The results for the Δ− and ρ0 indicate that both nucleon and Δ exchange in the u channel are important in their production, while f0 production is, as expected, consistent with nucleon exchange.
No description provided.
BACKWARD DIP.
No description provided.
We have studied backward baryon and meson production in π−p→pπ+π−π− at 8.0 GeV/c using a streamer chamber triggered by the detection of a fast forward proton. Our data sample (1227 events) displays prominent N*ρ and N*f quasi-two-body production. These states are investigated with regard to the peripheral nature of the production mechanism and sequential decay of the excited baryon and meson systems. The quasi-two-body production of N*ρ and N*f intermediate states is consistent with u-channel proton exchange as the dominant production mechanism. In the π+π−π− mass distribution we observe a 3- to 4- standard-deviation enhancement at M3π=1897±17 MeV/c2 with full width at half maximum = 110 ± 82 MeV/c2, but find no but find no evidence for backward A1 or A2 production. We observe Δ++(1232) production in the pπ+ effective mass distribution.
THESE VALUES ASSUME ONLY RHO(11) IS NON-ZERO. VALUES FOR OTHER RHO(MM) ARE QUOTED IN PAPER. SIG ERRORS INCLUDE OVER-ALL NORMALIZATION UNCERTAINTY, BUT NO BACKGROUND CORRECTIONS HAVE BEEN MADE.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
We have studied K+π− elastic scattering in the reaction K+p→K+π−Δ++ at 12 GeVc and in the Kπ mass interval 800 to 1000 MeV. We have performed a partial-wave analysis in this Kπ mass region, dominated by the p-wave resonance K*(890), in order to obtain information about the s-wave amplitude. We have extrapolated the K+π− moments, the total cross section, and p-wave cross section to the pion pole. The p-wave cross section is close to the unitarity limit and can be described by a Breit-Wigner resonance form, with parameters M=896±2 MeV and Γ=47±3 MeV. We then perform an energy-independent phase-shift analysis of the extrapolated moments and total cross section using this Breit-Wigner form for the p wave and a previously determined small negative phase shift for the I=32s wave. For the I=12s-wave phase shift we find the so called "down" solution, which has a phase shift that rises slowly from 20° at M(Kπ)=800 MeV to 60° at M(Kπ)=1000 MeV. The energy dependence of this phase shift is well described by an effective range form, with a scattering length a01=−0.33±0.05 F. The so-called "up" solution is eliminated or has large χ2 everywhere except for two overlapping mass intervals at M(Kπ)=890 and 900 MeV. However, due to limited statistics, we expect two solutions for the s wave very near the mass where the p wave is resonant. We then perform an energy-dependent partial-wave analysis and find again no evidence for an s-wave resonance although, due to limited statistics, we could not exclude one at 890 MeV with Γ<7 MeV.
Extrapolation.
Extrapolation. Initial K+ PI- system in P-wave state.
The total hadronic photoabsorption cross sections of a number of nuclei (C, Al, Cu, Nb, Sn, Ta, Pb) have been studied in detail using a tagged photon beam over the energy range 1.7-4 GeV. The results are described, and compared with models of photoabsorption.
STATISTICAL ERRORS. MEAN CROSS SECTIONS FOR EACH OF THE TWO ELECTRON BEAM ENERGIES OF 3.5 AND 4.6 GEV ARE ALSO GIVEN.
A-EFFECTIVE/A, USING SIG(GAMMA P) = 137 MUB AND SIG(GAMMA N) = 126 MUB. STATISTICAL ERRORS.
A-EFFECTIVE/A, USING SIG(GAMMA P) = 129 MUB AND SIG(GAMMA N) = 123 MUB. STATISTICAL ERRORS.