During an energy scan at the Cornell Electron Storage Ring, with use of the Columbia University-Stony Brook NaI detector, an enhancement in σ(e+e−→hadrons) is observed at center-of-mass energy ∼10.55 GeV. The mass and leptonic width of this state (ϒ′′′) suggest that it is the 4S13 bound state of the b quark and its antiquark. After applying to the data a cut in a (pseudo) thrust variable, the natural width is measured to be Γ=12.6±6.0 MeV, indicating that the ϒ′′′ is above the threshold for BB¯ production.
VISIBLE TOTAL HADRONIC CROSS SECTION FOR FIRST, THIRD AND FOURTH UPSILONS.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.
A fourth state in the upsilon energy region has been seen in e+e− collisions at the Cornell Electron Storage Ring. A resonance is observed with a mass 1112±5 MeV above the lowest upsilon state. The 9.6-MeV rms width is greater than the 4.6-MeV energy resolution of the e+e− beams. The observed characteristics of the new state make it a likely candidate for the 4S3 state of the bb¯ system, lying above the threshold for the production of B mesons.
NOT CORRECTED FOR TAU HEAVY LEPTON PRODUCTION NOR TWO-PHOTON COLLISIONS.
Using the DASP detector at the DESY storage ring DORIS we have continued measuring e + e − annihilations near and on the ϒ(9.46) resonance. From the cross sections for e + e − → μ + μ − and e + e − → hadrons we obtain a μ + μ − branching ratio for the ϒ(9.46) of (2.9 ± 1.3 ± 0.5) %, a leptonic width г ee = (1.35 ± 0.11 ± 0.22) keV and a total width of (47 −15 +37 keV.
VISIBLE HADRONIC CROSS SECTION. PEAK VALUE AT UPSILON IS 10.1 +- 0.7 NB.
No description provided.
This paper reports the results of a study of hadron production in e+e− collisions at c.m. system energies of 33, 35, and 35.8 GeV. Production of a new quark flavor has been sought. The measured values of the total cross section, the thrust distributions, and the study of inclusive muon production show no evidence for the production of a new charge-23e quark near threshold. In addition, during an energy scan in the region 29.9<~s<~31.6 GeV, no hadron resonance indicating the existence of a bound state composed of charge-23e quarks has been found.
No description provided.
ENERGY SCAN IN 20 MEV STEPS.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 29.9 TO 31.6 AND 35 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
Three narrow resonances have been observed in e+e− annihilation into hadrons at total energies between 9.4 and 10.4 GeV. Measurements of mass spacing and ratios of lepton pair widths support the interpretation of these "ϒ" states as the lowest triplet-S levels of the bb¯ quark-antiquark system.
No description provided.
The ϒ, ϒ′, and ϒ′′ states have been observed at the Cornell Electron Storage Ring as narrow peaks in σ(e+e−→hadrons) versus beam energy. Data were collected during a run with integrated luminosity of 1000 nb−1, using the Columbia University-Stony Brook segmented NaI detector. The measured mass differences are M(ϒ′)−M(ϒ)=559±1(±3) MeV and M(ϒ′′)−M(ϒ)=889±1(±5) MeV, where the errors in parentheses represent systematic uncertainties. Preliminary values for the leptonic width ratios were also obtained.
HADRONIC EVENTS/SMALL-ANGLE BHABHA YIELD.
This report reviews the experimental investigation of high energy e + e − interactions by the MARK J collaboration at PETRA, the electron-positron colliding beam accelerator at DESY in Hamburg, Germany. The physics objectives include studies of several purely electromagnetic processes and hadronic final states, which further our knowledge of the nature of the fundamental constituents and of their strong, electromagnetic and weak interactions. Before discussing the physics results, the main features and the principal components of the MARK J detector are discussed in terms of design, function, and performance. Several aspects of the on-line data collection and the off-line analysis are also outlined. Results are presented on tests of quantum electrodynamics using e + e − → e + e − , μ + μ − and τ + τ − , on the measurement of R , the ratio of the hadronic to the point-like muon pair cross section, on the search for new quark flavors, on the discovery of three jet events arising from the radiation of hard noncollinear gluons as predicted by quantum chromodynamics, and on the determination of the strong coupling constant α s .
SUMMARY OF RESULTS FOR R FROM TOTAL OF 2595 HADRON EVENTS. INCLUDES RED = 1046, 1079, 1072 AND 1114.
MEAN THRUST AND THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17, 22 AND 30 GEV. SOMEWHAT DETECTOR DEPENDENT. INCLUDES RED = 1079 AND 1072. SEE ALSO RED = 1114. ALSO JET ANALYSIS USING FOX-WOLFRAM MOMENTS.
OBLATENESS DISTRIBUTION AT 17 AND 27.4 TO 31.6 GEV. SEE RED = 1146.
We have performed a search for narrow resonances in the center of mass energy range from 29.90 to 31.46 GeV using the e + e − storage ring PETRA at DESY. We present the total cross section for hadron production and an upper limit for resonance production, indicating that no bound state of charge- 2 3 quarks exists in this energy range.
AVERAGE VALUE OF R OVER THE SCAN REGION.
THESE MEASUREMENTS COMBINED WITH PREVIOUS DATA AT 30.0 AND 31.6 GEV REPORTED IN CH. BERGER ET AL., PL 86B, 413 (1979).
A search for narrow resonances in e + e − annihilation at c.m. energies between 29.90 and 31.46 GeV provides no evidence for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is 38 nb MeV, significantly below the value expected for the lowest (t,t̄) bound state.
No description provided.