We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
Using the solenoidal magnetic detector PLUTO, we have measured the total cross section for e + e − annihilation into hadrons. Results are presented for center of mass energies between 3.6 and 4.8 GeV, and in the regions of the J ψ (3.1) and ψ(3.7) resonances. We also present results for the 2 prong cross section in the energy range 3.6 to 4.8 GeV.
The polarization of tau leptons in the reaction e+ e- --> tau+ tau- has been measured using a e+e- collider, TRISTAN, at the center-of-mass energy of 58 GeV. From the kinematical distributions of daughter particles in tau --> e nu nu-bar, mu nu nu-bar, rho nu or pi(K) nu decays, the average polarization of tau- and its forward-backward asymmetry have been evaluated to be 0.012 +- 0.058 and 0.029 +- 0.057, respectively.
Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.
Using the detector ARGUS at thee+e− storage ring DORIS II, we have investigated inclusive momentum spectra of charged pions, kaons, and protons from decays of the υ(4S) meson. The kaon spectra have been measured in two independent ways, by coherently exploiting the detector's particle identification capabilities, and by detecting decays in-flight. The extracted mean multiplicities for charged hadrons are 7.17±0.05±0.14 pions, 1.56±0.03±0.05 kaons and 0.110±0.010±0.007 protons per υ(4S) decay, where pions and protons fromKso and Δ decays have been subtracted.
The inclusive production cross sections of η′ (958) andfo (975) mesons are measured ine+e− annihilation in the nonresonant continuum around\(\sqrt s= 10\) GeV and in decays of the υ resonances using the ARGUS detector. For η′ (958) mesons, a production ratio of η′ (958)/ηdir=0.35±0.24, with ηdir=η−BR(η′→ηX)·η′, is determined in direct υ(1S) decays, which can be partially explained by the pseudoscalar singlet/octet mixing. Forfo(975) production, we obtain a production ratio offo(975)/p(770)°=0.17±0.030 in direct υ(1S) decays. In its production features, thefo(975) behaves like an ordinary meson, though aK\(\bar K\) molecule nature cannot be excluded. The substantial production yield of thefo(975) meson demonstrates the important effect of feeddown from mesons beyond the basic multiples on pseudoscalar and vector meson production.
Using the CELLO detector, we have measured cross sections for the processγγ→π+π− in the mass range 0.75–1.9 GeV/c2. A partial wave fit to the data indicates the presence of a sizeableS-wave amplitude with signs of resonant behaviour. Values for the γγ width of thef2(1270) are given, showing the model-dependence of this quantity. At higher dipion masses, the model of Brodsky and Lepage is found to give an order of magnitude description of the data.
We report a high-precision measurement of the ratio R of the total cross section for e+e−→hadrons to that for e+e−→μ+μ−, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R=3.96±0.09. This value of R is used to determine a value of the strong coupling constant αs of 0.23±0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.
Results on inclusive K s 0 production in e + e − annihilation at mean center-of-mass energies of 9.4, 12.0 and 30 GeV are presented. The ratio R (K 0 ) = 2 σ (K s 0 )/ σ μμ rises from 3.10 ± 0.75 at √ s = 9.4 GeV to 5.6 ± 1.2 at √ s = 30 GeV, corresponding to an approximately constant K 0 /charged-particle ratio of 0.12 ± 0.02. A similar ratio for K 0 / charged particle is observed for direct hadronic decays of the ϒ.
We report results from two new methods for measuring the total production of charmed particles in nonresonant e+e− annihilations at √s =10.5 GeV. The rate for detection of events containing two reconstructed charmed mesons relative to that for events containing one is used to extract information about total charm production independent of decay branching fractions. The value of ΔRcc¯, the total charm-pair cross section normalized to the pointlike μ-pair cross section, is found to be 1.13−0.13+0.17±0.09, under an assumption of limited particle correlations. In an independent analysis the inclusive cross section for e+e−→qq¯→e±X is measured to be 0.293±0.017±0.017 nb. Using measured relative production rates and semileptonic branching fractions of D0 and D+ mesons and estimates of these quantities for Ds and Λc, this is found to correspond to ΔRcc¯=2.07±0.12±0.26. These two measurements are discussed in the context of measurements made by reconstruction of exclusive hadronic decay modes and of theoretical expectations.