A measurement is presented of inelastic photo- and electroproduction of J/psi mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/psi mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k_T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data.
Measured differential photoproduction cross section as a function of the squared transverse momentum of the J/PSI.
Measured differential photoproduction cross section as a function of the elasticity of the J/PSI.
Measured photoproduction cross section as a function of the photon-proton centre of mass energy W.
We present a measurement of the polarization observed for bottomonium states produced in p-Cu collisions at sqrt(s)=38.8 GeV. The angular distribution of the decay dimuons of the Upsilon(1S) state show no polarization at small xF and pT but significant positive transverse production polarization for either pT > 1.8 GeV/c or for xF > 0.35. The Upsilon(2S+3S) unresolved states show a large transverse production polarization at all values of xF and pT measured. These observations are compared with an NRQCD calculation that predicts a transverse polarization in bottomonium production arising from quark-antiquark fusion and gluon-gluon fusion diagrams.
The observed polarization in the Drell-Yan sideband region as a function of PT. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the Drell-Yan sideband region as a function of XL. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the UPSILON(1S) region as a function of PT. There is an additional systematic error of 0.06 in the polarization measurements.
We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}
Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.
The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.
Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.
No description provided.