The production of \chib1P mesons in $pp$ collisions at a centre-of-mass energy of $7\tev$ is studied using $32\invpb$ of data collected with the \lhcb detector. The $\chib1P$ mesons are reconstructed in the decay mode $\chib1P \to \Y1S\g \to \mumu\g$. The fraction of \Y1S originating from \chib1P decays in the \Y1S transverse momentum range $6 < \pt^{\Y1S} < 15\gevc$ and rapidity range $2.0 < y^{\Y1S} < 4.5$ is measured to be $(20.7\pm 5.7\pm 2.1^{+2.7}_{-5.4})%$, where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown \Y1S and \chib1P polarizations.
Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different $p_T(\Upsilon(1S))$ bins, assuming production of unpolarized $\Upsilon(1S)$ and $\chi_b(1P)$ mesons. The first uncertainty is statistical, the second is the systematic uncertainty ($10.21\%$) and the third uncertainty is due to the unknown $\Upsilon(1S)$ and $\chi_b(1P)$ polarizations ($ _{-26}^{+13}\%$). The second and third uncertainties are considerent constant over the measurement fiducial phase-space.
The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.
The cross section results for forward neutron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV are shown. Two different forms, exponential and Gaussian, were used for the $p_T$ distribution. The integrated $p_T$ region for each bin is 0 < $p_T$ < 0.11$x_F$ GeV/$c$.
The $x_F$ dependence of $A_N$ for neutron production in the ZDC trigger sample.
The $x_F$ dependence of $A_N$ for neutron production for the ZDC$\otimes$BBC trigger sample.
We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.
Invariant differential cross sections of electrons from heavy-flavor decays.
Double-spin asymmetry of the heavy flavor electron production.
This work presents a new inclusive search for supersymmetry (SUSY) by the ATLAS experiment at the LHC in proton-proton collisions at a center-of-mass energy sqrt(s) = 7 TeV in final states with jets, missing transverse momentum and one or more isolated electrons and/or muons. The search is based on data from the full 2011 data-taking period, corresponding to an integrated luminosity of 4.7 inverse fb. Single- and multi-lepton channels are treated together in one analysis. An increase in sensitivity is obtained by simultaneously fitting the number of events in statistically independent signal regions, and the shapes of distributions within those regions. A dedicated signal region is introduced to be sensitive to decay cascades of SUSY particles with small mass differences ("compressed SUSY"). Background uncertainties are constrained by fitting to the jet multiplicity distribution in background control regions. Observations are consistent with Standard Model expectations, and limits are set or extended on a number of SUSY models.
The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.
Normalized differential primary charged particle yield in the centrality interval 0-5%.
Normalized differential primary charged particle yield in the centrality interval 5-10%.
Normalized differential primary charged particle yield in the centrality interval 10-20%.
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Mean value of N(C=CHARGED) v jet PT for R=0.2.
Mean value of N(C=CHARGED) v jet PT for R=0.4.
Mean value of N(C=CHARGED) v jet PT for R=0.6.
A search is presented for the pair production of light scalar top quarks in sqrt(s) = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. This analysis uses the full data sample collected during 2011 that corresponds to a total integrated luminosity of 4.7 fb-1. Light scalar top quarks are searched for in events with two opposite-sign leptons (e, mu), large missing transverse momentum and at least one jet in the final state. No excess over Standard Model expectations is found, and the results are interpreted under the assumption that the light scalar top decays to a b-quark in addition to an on-shell chargino whose decay occurs through a virtual W boson. If the chargino mass is 106 GeV, light scalar top quark masses up to 130 GeV are excluded for neutralino masses below 70 GeV.
Distribution of the PT of the leading electron for E-E events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading muon for MU-MU events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading electron for E-MU events in the Signal Region, before the application of the leading lepton PT cut.
A search for direct pair production of supersymmetric top squarks (stop_1) is presented, assuming the stop_1 decays into a top quark and the lightest supersymmetric particle, neutralino_1, and that both top quarks decay to purely hadronic final states. A total of 16 (4) events are observed compared to a predicted Standard Model background of 13.5+3.7-3.6 (4.4+1.7-1.3) events in two signal regions based on int(Ldt) = 4.7 fb^-1 of pp collision data taken at sqrt(s) = 7 TeV with the ATLAS detector at the LHC. An exclusion region in the stop_1 versus neutralino_1 mass plane is evaluated: 370<m(stop_1)<465 GeV is excluded for m(neutralino_1)~0 GeV while m(stop_1)=445 GeV is excluded for m(neutralino_1)<=50 GeV.
.
.
In this Letter we report the first results on $\pi^\pm$, K$^\pm$, p and $\mathrm {p\overline{p}}$ production at mid-rapidity ($\left|y\right|<0.5$) in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured by the ALICE experiment at the LHC. The $p_{\rm T}$ distributions and yields are compared to previous results at $\sqrt{s_{\rm NN}}$ = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with $\sqrt{s_{\rm NN}}$, which in hydrodynamic models is expected as a consequence of the increasing particle density. While the ${\rm K}/\pi$ ratio is in line with predictions from the thermal model, the ${\rm p}/\pi$ ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.
Transverse momentum distribution for positve and negative pions.
Transverse momentum distribution for positve and negative kaons.
Transverse momentum distribution for positve and negative protons.
Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at $\sqrt{s_{NN}}$ = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |$\eta$| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-$k_t$ algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," $R_{cp}$. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. $R_{cp}$ varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.
Glauber model calculation of the mean numbers of Npart and its associated errors, the mean Ncoll ratios, and Rcoll with fractional errors as a function of the centrality bins.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 0 - 10 %.
The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 10 - 20 %.