Cross-sections for diffractive particle production and pseudorapidity distributions of the decay products of diffractive states are presented. The data were obtained with the UA 5 streamer chamber detector at the CERNpp Collider operated in a new pulsed mode yieldingpp interactions at c.m. energies of 900 and 200 GeV. Data recorded with a special trigger designed to select a sample of events enriched in single-diffractive interactions clearly favour apt-limited fragmentation of diffractive states. The cross-section for single-diffractive particle production ϊ was found to be 7.8±0.5±1.1 mb at 900 GeV and 4.8±0.5±0.8 mb at 200 GeV (first error statistical, second systematic). From the pseudorapidity distribution of diffractive states we deduce the average number of charged particles to be 6.5±1.0 at 900 GeV and 4.1±1.1 at 200 GeV. Furthermore we report on our estimates for the cross-section of double-diffractive particle production at both Collider energies.
Single diffractive cross sections.
Average number of single diffractive charged particles.
Estimate of the double diffractive cross sections.
We present data on two-particle pseudorapidity and multiplicity correlations of charged particles for non single-diffractive\(p\bar p - collisions\) at c.m. energies of 200, 546 and 900 GeV. Pseudorapidity correlations interpreted in terms of a cluster model, which has been motivated by this and other experiments, require on average about two charged particles per cluster. The decay width of the clusters in pseudorapidity is approximately independent of multiplicity and of c.m. energy. The investigations of correlations in terms of pseudorapidity gaps confirm the picture of cluster production. The strength of forward-backward multiplicity correlations increases linearly with ins and depends strongly on position and size of the pseudorapidity gap separating the forward and backward interval. All our correlation studies can be understood in terms of a cluster model in which clusters contain on average about two charged particles, i.e. are of similar magnitude to earlier estimates from the ISR.
Correlation strength for different choices of pseudorapidity intervals.
Correlation strength as a function of the central gap size for the symmetric data.
Correlation strength as a function of the centre of the separating gap for a gap size of 2.
Multiplicity distributions of charged particles produced in non single-diffractive collisions between protons and antiprotons at centre of mass energies of 200 and 900 GeV are presented. The data were recorded in the UA5 streamer chambers at the CERN Collider, which was operated in a pulsed mode between the two energies. A new method to correct for acceptance limitations and inefficiencies based on the principle of maximum entropy has been used. Multiplicity distributions in full phase space and in intervals of pseudorapidity are presented in tabular form. The violation of KNO scaling in full phase space found by the UA5 group at an energy of 546 GeV is confirmed also at 200 and 900 GeV. The shape of the 900 GeV distribution in full phase space is narrower in the peak region than at 200 GeV but exhibits a pronounced high multiplicity tail. The negative binomial distribution fits data at 200 GeV in all pseudorapidity intervals and in small intervals at 900 GeV. In large intervals at 900 GeV, however, the negative binomial distribution. Fits to the partially coherent laser distribution are also presented as well as comparisons with predictions of the Dual Parton, the Fritiof and the Pythia models.
No description provided.
No description provided.
No description provided.
New data are presented on the charged multiplicity distribution for non single-diffractive events produced in pp̄ interactions at a CM energy s = 540 GeV . The distribution in the full pseudorapidity range is compared with data from the ISR. Using the scaling variable z = n 〈n〉 a change of shape is observed. The effect is manifested as an increase from 2% to 6% in the proportion of high multiplicity ( z > 2) events. For the central pseudorapidity range, | η | ⪅ 1.5, scaling is approximately valid up to s = 540 GeV .
THE SCALING VARIABLE Z IS N/MEAN(N). THE ERRORS ARE HIGHLY CORRELATED AND ARE BASED ON THE SQUARE ROOT OF THE NUMBER OF EVENTS IN THE BIN. IN THE CASE OF MULTIPLICITIES 2,4, AND 6, ADDITIONAL SYSTEMATIC ERRORS HAVE BEEN INCLUDED. ABOVE MULTIPLICITY 96 BINS HAVE BEEN COMBINED - THE VALUE IN THE TABLE IS THE AVERAGE OVER THE RANGE - NOT THE SUM. NOTE ALSO THAT IN FIG. 1 THE "Y-VALUE" IS MULTIPLIED BY THE MEAN MULTIPLICITY (29.1).
CHARGED MULTIPLICITY (NON-CORRECTED) FOR EVENTS WHICH HAVE AT LEAST ONE TRACK WITH ABS(ETARAP) <1.5.
CHARGED MULTIPLICITY (NON CORRECTED) FOR EVENTS WHICH HAVE AT LEAST ONE TRACK WITH ABS(ETARAP) <1.3.
We have made the first observations of Ξ − production in p p interactions at √ s =540 GeV. In a sample of 6964 non single-diffractive events we observe 17 Ξ − decays with an estimated background of less than one event. This corresponds to 0.04 ± 0.01 Ξ − per event in the transverse momentum range p t >1.0 GeV/ c and in the pseudorapidity range |η| < 3.5. Assuming an exponential p t distribution, we find 〈 p t 〉=1.1 −0.2 +0.3 GeV/ c .
No description provided.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
Results are presented from the first p p colliding beam runs at the CERN ISR, using the UA5 streamer chamber detector. p p interactions at s = 53 GeV are compared with pp data taken in the same experiment. The results are in good agreement with extrapolations of low-energy p p data.
No description provided.
MOMENTS OF MULTIPLICITY DISTRIBUTIONS FOR P P AND P AP. MULT(NAME=DQ) IS <(N-<N>)**Q>**1/Q. MULT(NAME=NQ) IS <N**Q>.
Data read from plot.
New data are presented on charged particle pseudorapidity distributions for inelastic events produced at c.m. energies\(\sqrt s \)=200 and 900 GeV. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode. The rise of the central density ρ(0) at energies up to\(\sqrt s \)=900 GeV has been studied. A new form of central region scaling is found involving the densityρn(0) for charged multiplicityn, namely that the scaled central densityρn(0)/ρ(0) expressed as a function ofz=n/〈n〉 is independent ofs. Scaling in the fragmentation region holds to 10–20%, and the small amount of scalebreaking observed here could be accommodated within the framework suggested by Wdowcyk and Wolfendale to account for both accelerator and cosmic ray data.
.
.
.
The production of Λ 's and Ξ − 's in proton-antiproton collisions at 200 and 900 GeV c.m. energy has been studied using decays observed in the UA5 streamer chambers. The results are compared to previously published 546 GeV data, to results from other experiments, and to four theoretical models. The Λ yield per inelastic event is estimated to be 0.42±0.11 at 200 GeV and 0.66±0.14 at 900 GeV. We find a mean number of Ξ − 's per inelastic collision of 0.03 −0.02 +0.04 at 200 GeV and 0.06 −0.03 +0.05 at 900 GeV. The average transverse momentum of Λ's in the rapidity region | y |⩽2 is found to be 0.80 −0.14 +0.20 GeV/ c at 200 GeV and 0.74±0.09 GeV/ c at 900 GeV. The average transverse momentum of Ξ − 's in the rapidity region | y |⩽3 is estimated to be 0.8 −0.2 +0.4 GeV/ c at 200 GeV and 0.7 −0.1 +0.2 GeV/ c at 900 GeV which is lower than the unexpectedly high value of 1.1±0.2 GeV/ c measured at 546 GeV. The ratio of Ξ − production to Λ production in the region | y |⩽2, p t >1 GeV/ c is 0.07 −0.04 +0.08 at 900 GeV. This value is consistent with the ratio found in e + e − collisions and lower energy pp collisions but lower than the value obtained at 546 GeV. The average particle composition of events at 200 and 900 GeV, estimated using UA5 data, is presented.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.