By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.
No description provided.
FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.
The production of K S 0 , Λ and Λ is measured in π + p reactions at 16 GeV/ c . The total strange particle cross section is found to be 4.0 ± 0.3 mb, about 20% of the inelastic cross section. Cross sections for single strange particles and for strange particle pairs are determined, both inclusively and as functions of the charged multiplicity. Relative production rates for different strange particle combinations are compared with the prediction of the isospin statistical model. Inclusive spectra for single particles are studied and it is found the K S 0 are produced mostly in the forward hemisphere, most probably by fragmentation of the incident pion into K K π . The Λ are mostly backwards, probably deriving from fragmentation of the proton into ΛK pairs. The Λ tend to be produced forwards, but evidence is found for central Λ Λ production. Distributions in rapidity of the Λ particles from π + p interactions are compared in terms of the factorisation hypothesis. Results are given on the Λ transversal polarisation.
No description provided.
No description provided.
No description provided.
We report results from a measurement of the inclusive process p+d→X+d in the region 0.03<|t|<0.12 (GeV/c)2 and 5 GeV2
No description provided.
No description provided.
No description provided.
Data, obtained from p-p collisions at centre-of-mass energies between 31 and 63 GeV, are presented on inclusive and semi-inclusive correlations between forward emitted neutrons and charged particles observed in an omnidirectional hodoscope. A total absorption spectrometer was used to detect the neutrons and to measure their energy. Significant correlations are observed over the whole rapidity range. The data suggest that neutrons result from the decay of clusters emitted in the fragmentation region.
No description provided.
No description provided.
No description provided.
New measurements are reported of total cross sections for π ± , K ± , p and p on protons and deuterons at 11 momenta between 23 and 280 GeV/ c .
No description provided.
No description provided.
No description provided.
The spin rotation parameter R has been measured for elastic π − p scattering at 40 GeV/ c , at four momentum transfers t ranging from −0.19 to −0.52 (GeV/ c ) 2 . The average value within this interval is R π − p = -0.200± 0.023. The resulting constraints on the πN scattering amplitudes are discussed. The experiments also yields an average value for K − p scattering, R K − p scattering, R K − p = -0.16±0.16.
.
.
New experimental results are presented on proton-proton elastic scattering at centre-of-mass energies s =23 GeV and s =62 GeV . The data are obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The absolute differential cross-sections show an energy-dependent behaviour. The position of the diffraction minimum changes from t =(−1.44±0.02)GeV 2 at 23 GeV to (−1.26±0.03)GeV 2 at 62 GeV. The cross-section at the second maximum is increasing with s . The connection of these observations with the hypothesis of “geometrical scaling” is discussed.
63 K EVENTS.
380 K EVENTS.
Data obtained from p-p collisions at centre-of-mass energies between 31 and 63 GeV are presented on correlations between momentum analysed forward π − , K − and p and charged particles observed in an omnidirectional hodoscope. The data show that significant correlations are present over the whole rapidity range for all three types of negative particles. The dependence on various kinematic variables suggests a cluster mechanism for the production of particles. In this picture, pions would be produced in clusters emitted in the fragmentation region while K − and p emanate from non-leading clusters.
No description provided.
No description provided.
No description provided.
The total and differential cross sections of the K¯0p→Λπ+ and K¯0p→∑0π+ reactions have been measured in the centre-of-mass energy range of l.5 to 2.3 GeV. Using our K¯0p→∑0π+ data as well as available cross-section data of isospin related channels, we have calculated the total I=0K¯N→∑π cross section as function of energy. The results are compared with predictions obtained from K¯N phase-shift analyses.
No description provided.
No description provided.
No description provided.
We report final results on the polarization parameter P in elastic scattering of π − , K − and antiprotons at 40 GeV/ c incident momentum. The energy dependence of P (t) in π − p above 10 GeV/ c is well fitted by P (t) α s αR(t)-α P (t) where α R (t) are the effective Regge and Pomeron trajectories respectively. The data in K − p are compatible with exchange degeneracy. The results inp¯p show an important structure for |t|> 0.3 (GeV/c) 2 demonstrating the existence of a large helicity flip amplitude.
.
.
.