We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
A high-statistics experiment on the reaction π − p→ π + π − π 0 n at 8.06 GeV/ c has been performed using a spectrometer detecting both charged particles and gamma rays. A partial-wave analysis based on the isobar model has been carried out for π + π − π 0 data in the mass range between 0.86 and 1.50 GeV for four t ′ regions: 0.0–0.1, 0.1–0.25, 0.25–0.45 and 0.45–0.95 (GeV/ c 2 ). Two axial-vector resonances, a 1 (1260) and h 1 (1170), were observed in the analysis. The masses and widths of a 1 and h 1 were determined to be M (a 1 = 1121 ± 8 MeV, Λ (a 1 = 239± 11 MeV, M (h 1 = 1168±4 MeV and Λ (h 1 = 345±6 MeV, respectively, by fitting the Breit-Wigner formula to the partial wave amplitude. A fit including the Deck type background was also tried in each t ′ region. The results showed a small effect on these resonance parameters and were consistent with those obtained by the simple Breit-Wigner fitting.
Production cross section of A2(1320) from the 12+ rhoD1+ partial wave.
Production cross section of H1(1190) from the 01+ rhoS0+ partial wave.
Production cross section of A1(1270) from the 11+ rhoS1+ partial wave.
The differential cross section for elastic antiproton—proton scattering at s =1.8 TeV has been measured over the t range 0.034⩽| t |⩽0.65 (GeV/ c ) 2 . A logarithmic slope parameter, B , of 16.3±0.3 (GeV/ c ) −2 is obtained. In contrast to lower energy experiments, no change in slope is observed over this t range.
Numerical values from FERMILAB-FN-562 suppliedto us by R. Rubinstein. Statistical errors only. t values at centre of each bin.
Nuclear slope parameter. Error contains 0.3 GeV**-2 systematic uncertainty folded.
Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.
The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.
Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).
The high antiproton-proton luminosity obtained by using a target system consisting of a hydrogen gas-jet crossing a coasting beam of cooled antiproton circulating in one of the rings of CERN's ISR provides the possibility to measure low cross section reactions with very high precision. We present measurements of the antiproton-proton elastic cross section at 90° CM at incident momenta between 3.5 GeV/ c and 5.7 GeV/ c . The precision of these measurements is much higher than previously reported results. The data show that the cross section of this reaction decreases faster than s −12 over this momentum range.
No description provided.
No description provided.
Data on the reactions (K+/π+)p→(K+/π+)pπ+π- and (K+/π+)p→(K+/π+)p2π+2π-, obtained with the European Hybrid Spectrometer, are presented and compared with data at lower energies. The contribution of beam and target diffractive dissociation and double Pomeron exchange, and porperties of these reactions are discussed.
No description provided.
No description provided.
No description provided.
We report measurements from elastic photoproduction of ω's on hydrogen for photon energies between 60 and 225 GeV, elastic φ photoproduction on hydrogen between 35 and 165 GeV and on deuterium between 45 and 85 GeV, elastic photoproduction on deuterium of an enhancement at 1.72 GeV/c2 decaying into K+K−, and elastic and inelastic photoproduction on deuterium of pp¯ pairs.
No description provided.
No description provided.
No description provided.
None
.
.
.
We have measured absolute differential cross sections and analyzing powers for neutron-proton elastic scattering for momentum transfer 0.01 < | t |< 0.08 (GeV/ c ) 2 at several energies between 378 and 1135 MeV. The ionization chamber IKAR filled with methane was used as both a gas target and recoil detector. For the analyzing-power measurements the scattered neutron was detected in scintillation counters in coincidence with the recoil proton detected in IKAR. Special care was taken to ensure a precise absolute normalization of the cross sections, with overall systematic uncertainties of 4–7%.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=6.4 PCT.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=5.4 PCT.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=6.5 PCT.
Cross sections or upper limits are reported for 12 meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: π±p→pπ±,pp±,π+°±,K+Σ±, (Λ0/Σ0)K0; K±p→pK±; p±p→pp. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.
No description provided.
No description provided.