Elliptic anisotropy measurement of the f$_0$(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-20-002, 2023.
Inspire Record 2741119 DOI 10.17182/hepdata.146017

Despite the f$_0$(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($\mathrm{q\bar{q}}$) meson, a tetraquark ($\mathrm{q\bar{q}q\bar{q}}$) exotic state, a kaon-antikaon ($\mathrm{K\bar{K}}$) molecule, or a quark-antiquark-gluon ($\mathrm{q\bar{q}g}$) hybrid. This paper reports strong evidence that the f$_0$(980) state is an ordinary $\mathrm{q\bar{q}}$ meson, inferred from the scaling of elliptic anisotropies ($v_2$) with the number of constituent quarks ($n_\mathrm{q}$), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f$_0$(980) state is reconstructed via its dominant decay channel f$_0$(980) $\to$$\pi^+\pi^-$, in proton-lead collisions recorded by the CMS experiment at the LHC, and its $v_2$ is measured as a function of transverse momentum ($p_\mathrm{T}$). It is found that the $n_q$ = 2 ($\mathrm{q\bar{q}}$ state) hypothesis is favored over $n_q$ = 4 ($\mathrm{q\bar{q}q\bar{q}}$ or $\mathrm{K\bar{K}}$ states) by 7.7, 6.3, or 3.1 standard deviations in the $p_\mathrm{T}$$\lt$ 10, 8, or 6 GeV/$c$ ranges, respectively, and over $n_\mathrm{q}$ = 3 ($\mathrm{q\bar{q}g}$ hybrid state) by 3.5 standard deviations in the $p_\mathrm{T}$$\lt$ 8 GeV/$c$ range. This result represents the first determination of the quark content of the f$_0$(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.

6 data tables

The elliptic flow, $v_{2}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}/2$, for $f_0(980)$ as a function of $<KE_{T}>/2$ in pPb collision at 8.16 TeV.

More…

Test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-005, 2024.
Inspire Record 2747130 DOI 10.17182/hepdata.146018

A test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) to $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$) is determined from the measured double ratio $R$(K) of these decays to the respective branching fractions of the B$^\pm$$\to$ J/$\psi$K$^\pm$ with J/$\psi$$\to$$\mu^+\mu^-$ and e$^+$e$^-$ decays, which allow for significant cancellation of systematic uncertainties. The ratio $R$(K) is measured in the range 1.1 $\lt q^2 \lt$ 6.0 GeV$^2$, where $q$ is the invariant mass of the lepton pair, and is found to be $R$(K) = 0.78$^{+0.47}_{-0.23}$, in agreement with the standard model expectation $R$(K) $\approx$ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $q^2$ range, $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) = (12.42 $\pm$ 0.68) $\times$ 10$^{-8}$, is consistent with the present world-average value and has a comparable precision.

9 data tables

The differential $\text{B}^+ \to \text{K}^+\mu^+\mu^-$ branching fraction measured in the individual $q^2$ bins. The uncertainties in the yields are statistical uncertainties from the fit, while the branching fraction uncertainties include both the statistical and systematic components.

Differential branching fraction $d\mathcal{B}/dq^2$, with theoretical predictions obtained with the HEPFiT, SuperIso, Flavio, and EOS packages. The HEPFiT predictions are available only for $q^2 < 8\ \mathrm{GeV}^2$.

Relative uncertainties in the differential branching fraction measurement of $\mathrm{B}^+\to\mathrm{K}^+\mu^+\mu^-$ per $q^2$ bin.

More…