Date

Photoproduction of Charmed F Mesons at $\gamma$ Energies of 20-{GeV} to 70-{GeV}

The Bonn-CERN-Ecole Poly-Glasgow-Lancaster-Manchester-Orsay-Paris-Rutherford-Sheffield collaboration Aston, D. ; Atkinson, M. ; Bailey, R. ; et al.
Phys.Lett.B 100 (1981) 91-94, 1981.
Inspire Record 155586 DOI 10.17182/hepdata.31208

Evidence is presented for inclusive photoproduction of F ± mesons in three decay modes, ηπ ± , ηπ ± π + π − and ηπ ± π + π + π − π − . The average mass of the F ± is found to be 2.020±0.010 GeV.

1 data table

No description provided.


Electroproduction of $\pi^0$ Mesons in the Resonance Region at $q^2=1.0$-{GeV}/$c^2$

Latham, A. ; Allison, John ; Booth, I. ; et al.
Nucl.Phys.B 189 (1981) 1-14, 1981.
Inspire Record 155783 DOI 10.17182/hepdata.43833

Data are presented for the reaction ep → ep π 0 at a nominal momentum transfer squared of 1.0 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Differential cross sections have been measured for isobar masses in the range 1.19–1.73 GeV/ c 2 .

22 data tables

No description provided.

No description provided.

No description provided.

More…

UPSILON-prime (10.01) RESONANCE PARAMETERS

The LENA collaboration Niczyporuk, B. ; Zeludziewicz, T. ; Chen, K.W. ; et al.
Phys.Lett.B 99 (1981) 169-173, 1981.
Inspire Record 155275 DOI 10.17182/hepdata.27126

The resonance parameters of the ϒ′(10.01) were measured using the LENA detector at the DORIS e + e − storage ring. We obtained a mass of M ( ϒ ′) = (10 013.6 ± 1.2 ± 10.0) MeV and an electronic width of Γ ee ( ϒ ′) = (0.53 ± 0.07 −0.05 +0.09 keV. The upper limit set to the μ-pair branching ratio is 3.8% which implies a lower limit on the total ϒ′ width of 14 keV. Together with out previous measurement of the ϒ parameters we obtain a mass difference M(ϒ′) − M(ϒ) = (552.0 ± 1.3 ± 10.0) MeV and Γ ee (ϒ′) Γ ee (ϒ) = 0.43 ± 0.07 −0.00 +0.05 .

1 data table

HADRONIC CROSS SECTION IN REGION OF UPSI(10020)0.


A Study of the Reactions $K^- p \to \Lambda \pi^0$, $\Lambda \eta$, $\Lambda \eta^\prime$ at 8.25-{GeV}/$c$ Incident $K^-$ Momentum

The Birmingham-CERN-Glasgow-Michigan State-Paris collaboration Al-Harran, S. ; Baubillier, M. ; Bloodworth, I.J. ; et al.
Nucl.Phys.B 183 (1981) 269-294, 1981.
Inspire Record 155276 DOI 10.17182/hepdata.34295

Differential cross sections and polarizations are presented for the reactions K − p → Λπ 0 , Λη , Λη ′ at 8.25 GeV/ c incident K − momentum. The data, which come from a high statistics experiment in the CERN 2 m bubble chamber, are compared with previous experimental results on the same reactions and with current theoretical ideas.

11 data tables

No description provided.

No description provided.

No description provided.

More…

High Statistics Study of ($\sim$ 10$^6$ events) of $J/\psi$ Production and $\Upsilon$ Production in the energy range 150 to 280 GeV by $\pi^\pm$, $p^\pm$ incident particle

The Saclay-CERN-College de France-Ecole Poly-Orsay collaboration Badier, J. ; Boucrot, J. ; Bourotte, J. ; et al.
AIP Conf.Proc. 68 (1981) 201-204, 1981.
Inspire Record 154782 DOI 10.17182/hepdata.49656

We have performed in the NA3 experiment the study of high mass dimuon production by a hadronic unseparated beam on hydrogen and platinum targets. The comparison of the production cross‐section for proton and antiproton together with the differential cross‐section dσ/dx allows us to compare the data with a production mechanism involving quark‐antiquark and gluon‐gluon interactions. The cosΘ* distribution of the same J/ψ data have also been analysed and results will be presented. Finally we have observed T production from 150 GeV/c incident pions.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Rho rho Production by Two Photon Scattering

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 97 (1980) 448, 1980.
Inspire Record 154418 DOI 10.17182/hepdata.27137
1 data table

Additional systematic uncertainty 25% not included.


Unique Solution for the Weak Neutral Current Coupling Constants in Purely Leptonic Interactions

The Mark-J collaboration Barber, D.P. ; Becker, U. ; Berghogff, G. ; et al.
Phys.Lett.B 95 (1980) 149-153, 1980.
Inspire Record 154136 DOI 10.17182/hepdata.6235

By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of Lepton and Pion Pair Production in Photon - Photon Collisions at Dci

Courau, A. ; Falvard, A. ; Haissinski, J. ; et al.
Phys.Lett.B 96 (1980) 402-406, 1980.
Inspire Record 153776 DOI 10.17182/hepdata.49087

We report a photon-photon experiment performed at the Orsay storage rings. 300e + e − , μ + μ − and π + π − pairs produced with low invariant masses have been observed. For each event, one or both protons have been tagged at a very small angle. The γγ→μ + μ − and γγ→π + π − cross-sections have been measured near threshold, the γγ→e + e − process being used as a normalization. The observed invariant mass distribution is compared to theoretical calculations for each of the three processes. The μ + μ − data are in good agreement with QED predictions. The π + π − cross-section, in our experimental acceptance, is somewhat larger than the one expected from the Born terms only.

1 data table

EACH BEAM ENERGY VARIED BETWEEN 750 MEV AND 1 GEV.


Charged Pion, Kaon, Proton and anti-Proton Production in High-Energy e+ e- Annihilation

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 444-449, 1980.
Inspire Record 153656 DOI 10.17182/hepdata.27192

Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Forward $K^*$+ (892) Production in $K^+ p \to \pi^+ K^0_S p$ at 12.7-{GeV}/$c$

Sacharidis, E.J. ; Blum, W. ; Dietl, H. ; et al.
Nucl.Phys.B 179 (1981) 9-32, 1981.
Inspire Record 154321 DOI 10.17182/hepdata.34347

We have measured 618 K + p → π + K S 0 p events at 12.7 GeV/ c incident lab momentum, mass range 790 ⩽ m π + K s 0 ⩽ 990 MeV and t range 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 . The π + K S 0 mass spectrum is dominated by the K ∗+ (892) resonance and a Breit-Wigner fit yields a mass m = 893.5 ± 1.1 MeV and a width Γ = 33.2 ± 4.1 MeV which is much narrower than measured hitherto. The t distribution of K ∗+ (892) events shows a dip in the forward direction and an exponential fall off thereafter, consistent with dominance of helicity flip amplitudes. The spin density matrix is almost saturated by ρ 11 and ρ 1−1 which are very close to their maximum allowed value of 1 2 throughout the measured t range except in the very forward direction where ρ 00 and Re ρ 10 deviate from zero. Natural parity exchanges, therefore, dominate with unnatural parity exchanges being restricted to a small region in the forward direction. A Regge pole analysis of the differential cross sections of the present measurement in conjunction with previously measured total cross sections supports the f-coupled-pomeron hypothesis.

3 data tables

SUBTRACTED BACKGROUND IS PHASE SPACE.

SUBTRACTED BACKGROUND IS AN INCOHERENT S-WAVE WITH EXPONENTIAL T-DEPENDENCE WITH SLOPE OF 6 GEV**-2.

Axis error includes +- 15/15 contribution.