We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.
The 6Jet mass spectrum.
Dalitz X distribution for jet 3 in the reduced 3-JET final state.
Dalitz X distribution for jet 4 in the reduced 3-JET final state.
The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.
3-jet mass distribution.
Inclusive 3-jet Dalitz X3 distribution.
Inclusive 3-jet Dalitz X4 distribution.
The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.
Exclusive 2-jet mass distribution.
Exclusive 3-jet mass distribution.
Exclusive 4-jet mass distribution.
The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.
Data normalized to 1 in the cos(theta) range -0.6 to 0.6.
Data normalized to 1 in the abs(cos(theta)) range <0.3.
Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.
Background subtracted normalised prompt photon angular distribution.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
None
ASSUMING ABS(GE)=ABS(GM).
No description provided.
No description provided.
The e + e − → p p cross section has been measured in the energy interval (1975 ⩽ 2 E ⩽ 2250) MeV for |cos θ | < 0.7. The measurement is based on ∼ 100 events, thus improving by a factor 3 on the previous existing statistics in this energy interval. The form factor | G | 2 is given as a function of energy under the assumption | G E | = | G M |. We also give the first measurement of the differential cross section, averaged over the energy interval, and estimate the ratio G M |/| G E | from it.
No description provided.
No description provided.
No description provided.