Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.
Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.
Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.
Total visible cross section for BBAR production and decay into MUON+JET.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of the muon transverse momentum.
We present a measurement of the polarization observed for bottomonium states produced in p-Cu collisions at sqrt(s)=38.8 GeV. The angular distribution of the decay dimuons of the Upsilon(1S) state show no polarization at small xF and pT but significant positive transverse production polarization for either pT > 1.8 GeV/c or for xF > 0.35. The Upsilon(2S+3S) unresolved states show a large transverse production polarization at all values of xF and pT measured. These observations are compared with an NRQCD calculation that predicts a transverse polarization in bottomonium production arising from quark-antiquark fusion and gluon-gluon fusion diagrams.
The observed polarization in the Drell-Yan sideband region as a function of PT. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the Drell-Yan sideband region as a function of XL. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the UPSILON(1S) region as a function of PT. There is an additional systematic error of 0.06 in the polarization measurements.
The production of c and b quarks in gamma-gamma collisions is studied with the L3 detector at LEP with 410 pb^-1 of data, collected at centre-of-mass energies from 189 GeV to 202 GeV. Hadronic final states containing c and b quarks are identified by detecting electrons or muons from their semileptonic decays. The cross sections sigma(e+e- -> e+e- c c~ X) and sigma(e+e- -> e+e- b b~ X) are measured and compared to next-to-leading order perturbative QCD calculations. The cross section of b production is measured in gamma-gamma collisions for the first time. It is in excess of the QCD prediction by a factor of three.
Total cross section for charm production.
Total cross section for beauty production.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.
The forward muon cross section (per unit rapidity).
The cross section for muons originating from b-quark decay.
Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.
We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.
It is assumed that the S-BQ decays intp BQ and LSP with a branching fraction of 100%.
An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.
No description provided.
We report a measurement of the ratios of the decay rates of the B~+, B~0 and B~0_s mesons into exclusive final states containing a J/psi meson. The final states were selected from 19.6 pb~{-1} of p-pbar collisions recorded by the Collider Detector at Fermilab. These data are interpreted to determine the bquark fragmentation fractions f_u, f_d and f_s. We also determine the branching fractions for the decay modes B~+ --> J/psi K~+, B~+ --> J/psi K~*(892)~+, B~0 --> J/psi K~0, B~0 --> J/psi K~*(892)~0 and B_s~0 --> J/psi phi(1020). We discuss the implications of these measurements to B meson decay models.
Charge conjugated states are implied. FD is considered as a quark fragmentation fraction.
We present a measurement of the b-quark cross section in 1.8 TeV p-p¯ collisions recorded with the Collider Detector at Fermilab using muonic b-quark decays. In the central rapidity region (‖yb‖<1.0), the cross section is 295±21±75 nb (59±14±15 nb) for pTb>21 GeV/c (29 GeV/c). Comparisons are made to previous measurements and next-to-leading order QCD calculations.
No description provided.