We present a QCD analysis of the proton structure function $F_2$ measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of $F_2$ in the range $2\cdot 10~{-4}<x<3\cdot 10~{-2}$ and compared with an approximate solution of the QCD evolution equations. The gluon density is found to rise steeply with decreasing $x$.
No description provided.
No description provided.
No description provided.
The inclusive A(e,e') cross section for $x \simeq 1$ was measured on $~2$H, C, Fe, and Au for momentum transfers $Q~2$ from 1-7 (GeV/c)$~2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.
No description provided.
No description provided.
No description provided.
Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of \ee data. It is shown that certain aspects of the quarks emerging from within the proton in \ep interactions are essentially the same as those of quarks pair-created from the vacuum in \ee annihilation. The measured area, peak position and widthof the fragmentation function show that the kinematic evolution variable, equivalent to the \ee squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in parton showers.
Distribution of the cosine of the Breit frame polar angle for data with the Breit frame energy flow selection. Statistical errors only.
Distribution of the cosine of the Breit frame polar angle for data before the Breit frame energy flow selection. Statistical errors only.
The fragmentation function for the current hemisphere of the Breit frame. Data are Breit frame energy flow selected only. Statistical errors only.
Photoproduction at HERA is studied in $ep$ collisions, with the ZEUS detector, for $\gamma p$ centre-of-mass energies ranging from 130-270 GeV. A sample of events with two high-$p_T$ jets ($p_T > 6$ GeV, $\eta <1.6$) and a third cluster in the approximate direction of the electron beam is isolated using a clustering algorithm. These events are mostly due to resolved photoproduction. The third cluster is identified as the photon remnant. Its properties, such as the transverse and longitudinal energy flows around the axis of the cluster, are consistent with those commonly attributed to jets, and in particular with those found for the two jets in these events. The mean value of the photon remnant $p_T$ with respect to the beam axis is measured to be $2.1 \pm 0.2$ GeV, which demonstrates substantial mean transverse momenta for the photon remnant.
Pseudorapidity distribution of the third cluster corrected to the hadron level.
Corrected PT distribution of the third cluster corrected to the hadron level.
Corrected Energy distribution of the third cluster corrected to the hadron level.
We present the structure function ratios F2(Li)/F2(D) and F2(C)/F2(D) measured in deep inelastic muon-nucleus scattering at a nominal incident muon energy of 200 GeV. The kinematic range 0.0001 < x < 0.7 and 0.01< Q~2 < 70 GeV~2 is covered. For values of $x$ less than $0.002$ both ratios indicate saturation of shadowing at values compatible with photoabsorption results.
Additional normalization error of 0.004 not included.
Data on F2(C)/F2(DEUT) merged with previous NMC data from Amaudruz et al. 1995, NP B441,3. (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+3106> RED = 3106 </a>). Additional normalization error of 0.004 not included.
This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.
No description provided.
No description provided.
No description provided.
The reaction C12(e,e′pp) has been studied at an energy transfer ω=212MeV and a three-momentum transfer |q|=70MeV/c. The measured missing-energy spectrum shows a signature for knockout of proton pairs from (1p)2, (1p,1s), and (1s)2 states. A comparison of the data with a calculation, in which different processes leading to two-nucleon knockout are accounted for, shows that the measured cross section for the knockout of a (1p)2 pair can largely be attributed to short-range nucleon-nucleon correlations.
No description provided.
No description provided.
No description provided.
We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.
Additional normalization uncertainty of 0.4 pct not included.
Additional normalization uncertainty of 0.4 pct not included.
Additional normalization uncertainty of 0.4 pct not included.
We report on a high-statistics measurement of the deuteron spin structure function g1d at a beam energy of 29 GeV in the kinematic range 0.029<x<0.8 and 1<Q2<10 (GeV /c)2. The integral γ1d=∫1g1ddx evaluated at fixed Q2=3 (GeV /c)2 gives 0.042±0.003(stat)±0.004(syst). Combining this result with our earlier measurement of g1p, we find γ1p−γ1n=0.163±0.010(stat)±0.016(syst), which agrees with the prediction of the Bjorken sum rule with O(αs3) corrections, γ1p−γ1n=0.171±0.008. We find the quark contribution to the proton helicity to be Δq=0.30±0.06.
No description provided.
Values of G1 computed assuming G1/F1 is independent of Q**2 and evaluated at Q**2 = 3 GeV**2.
Deep inelastic $e~-p$ scattering has been studied in both the charged-current (CC) and neutral-current (NC) reactions at momentum transfers squared, $Q~2$, between 400 GeV$~2$ and the kinematic limit of 87500 GeV$~2$ using the ZEUS detector at the HERA $ep$ collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, $ d\sigma/dQ~2 $, are presented. For $Q~2 \simeq M_W~2$, where $M_W$ is the mass of the $W$ boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high $Q~2$. The $Q~2$ dependence of the CC cross section determines the mass term in the CC propagator to be $M_{W} = 76 \pm 16 \pm 13$GeV.
Data requested from authors.
Neutral current cross sections.
Charged current cross sections.