We have measured, as a function of transverse momentum (p⊥), the invariant cross section Edσd3p for the production of π±, K±, p, p¯, d, and d¯ in proton collisions with a tungsten (W) target at incident proton energies of 200, 300, and 400 GeV. The measurements were made in the region of 90° in the c.m. system of the incident proton and a single nucleon at rest. Measurements were also made with 300-GeV protons incident on Be, Ti, and W targets of equal interaction length. These p-nucleus measurements, which show a strong dependence on atomic number at high p⊥, were used to extract effective proton-nucleon cross sections by extrapolation to atomic number unity. At large values of the scaling variable x⊥=2p⊥s, where s is the square of the c.m. energy, the pion data are found to be well represented by the expression (s)−ne−ax⊥, with n=11.0±0.4 and a=36.0±0.4. x⊥<0.35, where similar measurements have been made at the CERN ISR, our data are in good agreement with the ISR data.
No description provided.
No description provided.
No description provided.
None
ONE EVENT SEEN - PROBABLY AN ANTIPROTON.
The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.
No description provided.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
Total cross sections of π± and K± on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. All of the cross sections rise with increasing momentum.
No description provided.
PARTICLE-ANTIPARTICLE CROSS SECTION DIFFERENCES - SOME COMMON ERRORS CANCEL.
Proton and antiproton total cross sections on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. The proton cross sections rise with increasing momentum. Antiproton cross sections fall with increasing momentum, but the rate of fall decreases between 50 and 150 GeV/c, and from 150 to 200 GeV/c there is little change in cross section.
No description provided.
ANTIPARTICLE-PARTICLE CROSS SECTION DIFFERENCES.
In a 35 000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at the Fermi National Accelerator Laboratory, 10054 interactions have been observed. The measured total cross section is $40.68 \pm 0.55$ mb, the elastic cross section is $7.89 \pm 0.52$ mb, and the average charged-particle multiplicity for inelastic events is $8.S0 \pm 0.12$.
QUOTED ERRORS INCLUDE EFFECTS OF CORRECTIONS.
No description provided.
We have observed muons produced directly in Cu and W targets by 300-GeV incident protons. We find a yield of muons which is approximately a constant fraction (0.8·10−4) of the pion yield for both positive and negative charges and for transverse momenta between 1.5 and 5.4 GeV/c.
No description provided.
Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.
No description provided.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.