The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085<x<0.6 and 0.8<Q2<17GeV2. The sensitivity of the nuclear structure functions to the size and mean density of the target nucleus is discussed.
Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.
The charge asymmetry of leptons from W-boson decay has been measured using p¯p data from the Collider Detector at Fermilab at √s =1.8 TeV. The observed asymmetry is well described by most of the available parton distributions.
Electrons in the central region.
Muons in the central region.
Plug electrons.
Results are presented on the ratio of neutron and proton structure functions, F 2 n / F 2 p , deduced from deep inelastic scattering of muon from hydrogen and deuterium. The data, which were obtained at the CERN muon beam at 90 and 280 GeV incident energy, cover the kinematic range x = 0.002−0.80 and Q 2 = 0.1−190 GeV 2 . The measured structure function ratios have small statistical and systematic errors, particularly at small and intermediate x . The observed Q 2 dependence in the range x = 0.1−0.4 is stronger than predicted by perturbative QCD. From the present data together with results from other experiments it is suggested that the twist-four coefficient for the proton is smaller than that for the neutron for x larger than 0.2.
No description provided.
No description provided.
Merged 90 and 280 GeV data.
We have measured production cross-sections of the new neutron-rich isotopes58Ti,61V,63Cr,66Mn,69Fe,71Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u86Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss measurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parametrization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide78Ni, are discussed.
No description provided.
Results on the cross section for the production of electron pairs in p p collisions at √ s = 630 GeV are presented. The measured value is σ = 405 ± 51 (syst.) ± 84 (syst.) pb, in the invariant mass interval 10 < m < 70 GeV. The results are compared to recent theoretical calculations which include O( α s 2 ) QCD contributions. The comparison of these data with those of lower energy experiments show approximate scaling as a function of the variable √τ = m √s .
No description provided.
Statistical and systematic errors combined.
Statistical errors only.
The production ofDS+ mesons inB meson decays, and inq\(\bar q\) continuum events, has been studied with the ARGUS detector at thee+e− storage ring DORIS II. In addition to the measurement of inclusiveDS+ production in γ(4S)→B\(\bar B\) decays, all eight two-body decay modesB→DS(*)D(*) have been measured with branching ratios between 1% and 3%. By comparing our inclusive and exclusive results to predictions of heavy quark effective theory, a value of (267±28) MeV × [2.7%/BR(Ds+→φπ+)]1/2 is obtained for the weak decay constant fDS(*), averaged overDS+ andDS*+ mesons.
Inclusive D/S cross sections in continuum near to UPSI(4S).
We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.
Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.
Distribution for single hemisphere.
Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.. Contributions from K0S and LAMBDA decays have been subtracted.
The inclusive production of ρ0 mesons was measured in γp andh±p collisions at beam energies of 65 GeV≦Eγ≦175 GeV andEh=80, 140 GeV, respectively, whereh is π orK. Cross sections were determined for all beams and energies as functions ofxF (−0.1≦xF≦1.0),pT (0≦pT≦3.5 GeV/c) and the polar decay angle of the ρ0 by fitting the ρ0 signal in π+π- mass distributions. The ρ0 line shape is found to be distorted from a pure Breit-Wigner distribution throughout most of thexF−pT plane for both photon and hadron beams and a simple explanation is suggested. Throughout the paper emphasis is put on the comparison of photon and hadron beam data. The comparison of cross sections of γp andhp data provides a measure of the Vector Meson Dominance factor throughout thexF−pT range of the ρ0. The ρ0 production at lowpT can be described for both photon and hadron beams by a triple regge model at largexF. Similarly central production is well described by the quark-antiquark fusion model. At largepT there is an excess of ρ0 photoproduction which is consistent with the expected onset of pointlike photon interactions.
No description provided.
No description provided.
No description provided.
The L3 detector at LEP has been used to determine the number of light neutrino families by measuring the cross section of single photon even in e + e − collisions at energies near the Z 0 resonance. We have observed 61 single photon candidates with more than 1.5 GeV of deposited energy in the barrel electromagnetic calorimeter, for a total integrated luminosity of 3.0 pb −1 . From a likelihood fir to the single photon cross sections, we determin N ν =3.24 ± 0.46 ( statistical ) ±0.22 ( systematic ).
Corrected single photon cross sections. Errors represent 68 pct CL intervals and take into account the background fluctuations.
We present results on J/ψ production in muon interactions with tin and carbon targets at incident muon energies of 200 and 280 GeV. The ratio of cross sections per nucleon for J/ψ production on tin and carbon, R (Sn/C), is studied as a function of p T 2 , z and x . We find an enhancement for coherent J/ψ production R coh (Sn/C) = 1.54 ± 0.07, a suppression for quasielastic production R qe (Sn/C) = 0.79 ± 0.06 and for inelastic production R in (Sn/C) = 1.13 ± 0.08. The inelastic cross section ratio can be interpreted within the Colour Singlet model as an enhancement of the gluon distribution in tin with respect to that in carbon. The dependence of the ratio on z and p T 2 can explain the discrepancy between the results obtained in previous experiments.
Data for coherent events.
Data for quasielastic events.
Data for inelastic events.