In a Quark-Gluon Plasma (QGP), the fundamental building blocks of matter, quarks and gluons, are under extreme conditions of temperature and density. A QGP could exist in the early stages of the Universe, and in various objects and events in the cosmos. The thermodynamic and hydrodynamic properties of the QGP are described by Quantum Chromodynamics (QCD) and can be studied in heavy-ion collisions. Despite being a key thermodynamic parameter, the QGP temperature is still poorly known. Thermal lepton pairs ($e^+e^-$ and $\mu^+\mu^-$) are ideal penetrating probes of the true temperature of the emitting source, since their invariant-mass spectra suffer neither from strong final-state interactions nor from blue-shift effects due to rapid expansion. Here we measure the QGP temperature using thermal $e^+e^-$ production at the Relativistic Heavy Ion Collider (RHIC). The average temperature from the low-mass region (in-medium $\rho^0$ vector-meson dominant) is $(1.99 \pm 0.24) \times 10^{12}$ K, consistent with the chemical freeze-out temperature from statistical models and the phase transition temperature from LQCD. The average temperature from the intermediate mass region (above the $\rho^0$ mass, QGP dominant) is significantly higher at $(3.40 \pm 0.55)\times 10^{12}$ K. This work provides essential experimental thermodynamic measurements to map out the QCD phase diagram and understand the properties of matter under extreme conditions.
The inclusive dielectron invariant mass spectra of 27 GeV in 0-80% centrality.
The inclusive dielectron invariant mass spectra of 54.4 GeV in 0-80% centrality.
The charged multiplicity normalzied excess yield of 27 GeV in 0-80% centrality.
Based on a data sample of 10 billion $J/\psi$ events collected with the BESIII detector, improved measurements of the Dalitz decays $\eta/\eta'\rightarrow\gamma e^+e^-$ are performed, where the $\eta$ and $\eta'$ are produced through the radiative decays $J/\psi\rightarrow\gamma \eta/\eta'$. The branching fractions of $\eta\rightarrow\gamma e^+e^-$ and $\eta'\rightarrow\gamma e^+e^-$ are measured to be $(7.07 \pm 0.05 \pm 0.23)\times10^{-3}$ and $(4.83\pm0.07\pm0.14)\times10^{-4}$, respectively. Within the single pole model, the parameter of electromagnetic transition form factor for $\eta\rightarrow\gamma e^+e^-$ is determined to be $\Lambda_{\eta}=(0.749 \pm 0.027 \pm 0.007)~ {\rm GeV}/c^{2}$. Within the multi-pole model, we extract the electromagnetic transition form factors for $\eta'\rightarrow\gamma e^+e^-$ to be $\Lambda_{\eta'} = (0.802 \pm 0.007\pm 0.008)~ {\rm GeV}/c^{2}$ and $\gamma_{\eta'} = (0.113\pm0.010\pm0.002)~ {\rm GeV}/c^{2}$. The results are consistent with both theoretical predictions and previous measurements. The characteristic sizes of the interaction regions for the $\eta$ and $\eta'$ are calculated to be $(0.645 \pm 0.023 \pm 0.007 )~ {\rm fm}$ and $(0.596 \pm 0.005 \pm 0.006)~ {\rm fm}$, respectively. In addition, we search for the dark photon in $\eta/\eta^\prime\rightarrow\gamma e^{+}e^{-}$, and the upper limits of the branching fractions as a function of the dark photon are given at 90% confidence level.
The binned invariant mass spectrum of $e^+e^-$ pairs produced from the $\eta\to \gamma e^+e^-$ transition. The efficiency-corrected and background-subtracted data are binned in M($e^+e^-$) and the number of events in each bin is shown.
The binned invariant mass spectrum of $e^+e^-$ pairs produced from the $\eta^\prime\to \gamma e^+e^-$ transition. The efficiency-corrected and background-subtracted data are binned in M($e^+e^-$) and the number of events in each bin is shown.
Using a sample of $(10087\pm44)\times 10^6$$J/\psi$ events, which is about 45 times larger than that was previously analyzed, a further investigation on the $J/\psi\rightarrow \gamma 3(\pi^+\pi^-)$ decay is performed. A significant distortion at 1.84 GeV/$c^2$ in the line-shape of the $3(\pi^+\pi^-)$ invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, $X(1840)$ and $X(1880)$. The new state $X(1880)$ is observed with a statistical significance larger than $10\sigma$. The mass and width of $X(1880)$ are determined to be $1882.1\pm1.7\pm0.7$ MeV/$c^2$ and $30.7\pm5.5 \pm2.4$ MeV, respectively, which indicates the existence of a $p\bar{p}$ bound state.
The binned invariant mass spectrum of 6pi. The data correspond to Figure 3 of the event sample collected by BESIII. The mass range 1.55 < M(6pi) < 2.07 GeV is subdivided into 130 equidistant M(6pi) bins with a width of 4 MeV. The binned mass spectrum has been corrected by efficiency and the background Jpsi -> pi0 3(pi+ pi-) has been removed.
We report on laser cooling of a large fraction of positronium (Ps) in free-flight by strongly saturating the $1^3S$-$2^3P$ transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived $3^3P$ states. The second effect is the one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a 58(9) % increase in the coldest fraction of the Ps ensemble.
SSPALS spectra of positronium in vacuum without lasers, with the 205 nm and 1064 nm lasers, with the 243 nm laser only, and with all three lasers 243 nm, 205 nm and 1064 nm. The 243 nm laser is firing during the time window from −20 to 50 ns, while the 205 nm and 1064 nm are injected 75 ns after positron implantation time (t = 0 ns). Each curve is an average of 90 individual spectra. The statistical error is smaller than the linewidths. For analysis, the spectra were integrated between 150 and 400 ns.
Ps velocity distribution measured by SSPALS. Transverse Doppler profile measured by two-photon resonant ionization. A Gaussian fit yields an rms width of 44(1) pm, which translates to a Ps rms velocity of 5.3 $\pm$ 0.2 × 10$^4$ m/s after deconvoluting the laser bandwidth.
Ps velocity distribution measured by SSPALS. Velocity-resolved increase in the number of ground state Ps atoms, induced by the 243 nm transitory excitation to the 2$^3$P level. At resonance, the expected Lamb dip is observed. A 2-Gaussian fit yields an rms width of the enveloping Gaussian of 44(3) pm, which corresponds to a Ps rms velocity of 4.9 $\pm$ 0.4 × 10$^4$ m/s.
We determine the CKM matrix-element magnitude $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays reconstructed in $189 \, \mathrm{fb}^{-1}$ of collision data collected by the Belle II experiment, located at the SuperKEKB $e^+e^-$ collider. Partial decay rates are reported as functions of the recoil parameter $w$ and three decay angles separately for electron and muon final states. We obtain $|V_{cb}|$ using the Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parametrizations, and find $|V_{cb}|_\mathrm{BGL}=(40.57\pm 0.31 \pm 0.95\pm 0.58)\times 10^{-3}$ and $|V_{cb}|_\mathrm{CLN}=(40.13 \pm 0.27 \pm 0.93\pm 0.58 )\times 10^{-3}$ with the uncertainties denoting statistical components, systematic components, and components from the lattice QCD input, respectively. The branching fraction is measured to be ${\cal B}(\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell)=(4.922 \pm 0.023 \pm 0.220)\%$. The ratio of branching fractions for electron and muon final states is found to be $0.998 \pm 0.009 \pm 0.020$. In addition, we determine the forward-backward angular asymmetry and the $D^{*+}$ longitudinal polarization fractions. All results are compatible with lepton-flavor universality in the Standard Model.
Measured partial decay rates $\Delta\Gamma$ (in units of $10^{-15}$ GeV)
Average of normalized decay rates over $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays
Full experimental (statistical and systematic) correlations (in \%) of the partial decay rates for the $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays.
We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.
Observed values of all angular asymmetry variables.
Full experimental covariance matrix of all angular asymmetry variables.
PHENIX presents a simultaneous measurement of the production of direct $\gamma$ and $\pi^0$ in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over a $p_T$ range of 7.5 to 18 GeV/$c$ for different event samples selected by event activity, i.e. charged-particle multiplicity detected at forward rapidity. Direct-photon yields are used to empirically estimate the contribution of hard-scattering processes in the different event samples. Using this estimate, the average nuclear-modification factor $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is $0.925{\pm}0.023({\rm stat}){\pm}0.15^{\rm (scale)}$, consistent with unity for minimum-bias (MB) $d$$+$Au events. For event classes with moderate event activity, $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is consistent with the MB value within 5% uncertainty. These results confirm that the previously observed enhancement of high-$p_T$$\pi^0$ production found in small-system collisions with low event activity is a result of a bias in interpreting event activity within the Glauber framework. In contrast, for the top 5% of events with the highest event activity, $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is suppressed by 20% relative to the MB value with a significance of $4.5\sigma$, which may be due to final-state effects.
The $p_{T}$ distribution at high $p_{T}$ of neutral pions (panel (a)) for different d+Au event activity classes compared to those from p+p collisions (Phys. Rev. C 105, 064902).
The $p_{T}$ distribution at high $p_{T}$ of direct photons (panel (b)) for different d+Au event activity classes compared to those from p+p collisions (Phys. Rev. D 86, 072008).
Panel (c) shows the ratio $\gamma^{dir}/\pi^{0}$. For better visibility the points are slightly shifted in $p_{T}$ .
Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.
Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
A precision measurement of the matrix elements for $\eta\to\pi^+\pi^-\pi^0$ and $\eta\to\pi^0\pi^0\pi^0$ decays is performed using a sample of $(10087\pm44)\times10^6$$J/\psi$ decays collected with the BESIII detector. The decay $J/\psi \to \gamma \eta$ is used to select clean samples of 631,686 $\eta\to\pi^+\pi^-\pi^0$ decays and 272,322 $\eta\to\pi^0\pi^0\pi^0$ decays. The matrix elements for both channels are in reasonable agreement with previous measurements. The non-zero $gX^2Y$ term for the decay mode $\eta\to\pi^+\pi^-\pi^0$ is confirmed, as reported by the KLOE Collaboration, while the other higher-order terms are found to be insignificant. Dalitz plot asymmetries in the $\eta\to\pi^+\pi^-\pi^0$ decay are also explored and are found to be consistent with charge conjugation invariance. In addition, a cusp effect is investigated in the $\eta\to\pi^0\pi^0\pi^0$ decay, and no obvious structure around the $\pi^+\pi^-$ mass threshold is observed.
The acceptance corrected $\eta\to\pi^+\pi^-\pi^0$ data from 10 billion $J/\psi$ events collected at BESIII and the corresponding statistical uncertainties in the Dalitz plot variables $X$ and $Y$. The data are divided into $20\times20$ bins in $X$ and $Y$, and only the bins with non-zero event are listed in the table. The first two columns in the table are the center values of $X$ and $Y$, respectively. The last column is the acceptance corrected data and the corresponding statistical uncertainties.
The acceptance corrected $\eta\to\pi^0\pi^0\pi^0$ data from 10 billion $J/\psi$ events collected at BESIII and the corresponding statistical uncertainties in the Dalitz plot variables $X$ and $Y$. The data are divided into $20\times20$ bins in $X$ and $Y$, and only the bins with non-zero event are listed in the table. The first two columns in the table are the center values of $X$ and $Y$, respectively. The last column is the acceptance corrected data and the corresponding statistical uncertainties.
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.
The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.
The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.