Total cross sections of π ± , K ± , p and p on protons and deuterons have been measured at 6 momenta between 200 and 370 GeV/ c .
New measurements are reported of total cross sections for π ± , K ± , p and p on protons and deuterons at 11 momenta between 23 and 280 GeV/ c .
Total cross sections of π± and K± on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. All of the cross sections rise with increasing momentum.
Proton and antiproton total cross sections on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. The proton cross sections rise with increasing momentum. Antiproton cross sections fall with increasing momentum, but the rate of fall decreases between 50 and 150 GeV/c, and from 150 to 200 GeV/c there is little change in cross section.
The energy dependence of the cross section for neutrino- and antineutrino-nucleon charged-current interactions has been determined from data taken in Fermilab's dichromatic neutrino beam. σνE=(0.669±0.003±0.024)×10−38 cm2/GeV and σν¯E=(0.340±0.003±0.02)×10−38 cm2/GeV are found. These results are higher than some previous measurements.
Measurements of inclusive spectra and mean multiplicities of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter.
Results on two-particle $\Delta\eta\Delta\phi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.
Measurements of flux-normalized neutrino and antineutrino total charged-current cross sections (σ) in the energy range 45<E<205 GeV are presented. We see no evidence for the anomalous sharp rise in σν¯σν reported by earlier authors. The neutrino cross section rises linearly with energy and with σE about 18% smaller than other measurements below 10 GeV. The average antineutrino slope at 55 GeV is consistent with measurements at low energy; however, a (20 ± 10)% increase is indicated over our energy range.
We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.
The ArgoNeuT collaboration presents measurements of inclusive muon neutrino and antineutrino charged current differential cross sections on argon in the Fermilab NuMI beam operating in the low energy antineutrino mode. The results are reported in terms of outgoing muon angle and momentum at a mean neutrino energy of 9.6 GeV (neutrinos) and 3.6 GeV (antineutrinos), in the range $0^\circ < \theta_\mu < 36^\circ$ and $0 < p_\mu < 25$ GeV/$c$, for both neutrinos and antineutrinos.