We have measured the polarization parameter in π−p elastic scattering at laboratory momenta of 1180, 1250, and 1360 MeV/c in the angular interval 65°<θc.m.<115°. The results were used to show that the polarized target used in these (and other similar) experiments was uniformly polarized. These measurements were also used to resolve pre-existing experimental discrepancies in the determination of the polarization parameter, and to clarify the behavior of scattering amplitudes in this energy range. We show that local measurements of this type are important in resolving discrete ambiguities affecting the energy continuation of the amplitudes. An important by-product of this experiment is the development of a fast method of reconstructing particle trajectories and fitting the elastic events, which could have a significant impact for future high-statistics experiments.
No description provided.
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
None
No description provided.
The results presented in this paper were obtained from a 105 000 frame exposure of the FNAL Hybrid Proportional Wire Chamber-30 inch Bubble Chamber System, in a tagged beam of 147 GeV/ c negative particles. Elastic, total and topological cross sections were obtained for both π − p and K − p interactions. Comparisons with other data, taken with various beam particles over large momentum intervals, show good agreement with KNO scaling, and similarity in the scaling behavior of σ n for the different beam particles.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT. THE ERRORS INCLUDE SOME SYSTEMATIC ERRORS.
THE FORWARD CROSS SECTION AGREES WELL WITH THE OPTICAL POINT FROM TOTAL CROSS SECTION MEASUREMENTS.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT.
Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.
ERRORS ARE STATISTICAL ONLY EXCEPT FOR 2-PRONG CROSS-SECTIONS.
EXPONENTIAL FIT TO ELASTIC T DISTRIBUTION TO CORRECT FOR AN APPARENT LOSS OF EVENTS AT SMALL -T.
MOMENTS OF 100 GEV/C AP P MULTIPLICITY DISTRIBUTION.
The differential cross section of π+p elastic scattering has been measured in two high-statistics bubble-chamber exposures at laboratory beam momenta of 3.7 and 7.1 GeV/c. A new feature suggested by these data is a dip in dσdu at −u≃3 GeV2. This dip corresponds well to the third zero of J0(b−u′), where ℏcb=1 fm. The effective u-channel Regge trajectory computed for these two energies has a slope of 0.22 ± 0.26.
No description provided.
None
No description provided.
No description provided.
IM(AMP) VIA OPTICAL THEOREM FROM TOTAL CROSS SECTIONS OF L. M. VASILYEV ET AL., PL 36B, 528 (1971).
We have measured small angle elastic pion-proton scattering in 40 and 50 GeV c π − beams at Serpukhov. Analysis of the data in the Coulomb interference region yields a value for the ratio of the real to the imaginary part of the strong amplitude, ϱ (0)=−0.074 ± 0.033 at 40 GeV/ c and ϱ (0)=−0.006 ±0.026 at 50 GeV/ c
STATISTICAL ERRORS ONLY.
STATISTICAL ERRORS ONLY.
We have measured elastic pion-proton scattering in a 50 GeV/ c π − beam at the 76 GeV proton synchrotron in Serpukhov. Data are presented for four-momenta transfer squared in the range 0.03 < t < 0.4 (GeV/ c ) 2 .
SLOPE IS 9.1, +0.2, -0.4 GEV**-2 (INCLUDING SYSTEMATIC ERRORS).
Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.