Small Angle Elastic Proton Proton Scattering from 25-GeV to 200-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 29 (1972) 1755-1758, 1972.
Inspire Record 73778 DOI 10.17182/hepdata.21428

We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.

1 data table match query

No description provided.


Measurement of proton-proton elastic scattering and total cross-section at S**(1/2) = 7-TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 101 (2013) 21002, 2013.
Inspire Record 1220862 DOI 10.17182/hepdata.66456

At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).

4 data tables match query

The measured differential elastic cross section.

The measured differential elastic cross section in the high |T| region. where it originally appeared as a plot, but was not tabulated.

The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.

More…

Isobar production and elastic scattering in p p interactions from 6-GeV/c to 30-GeV/c

Edelstein, R.M. ; Carrigan, Richard A., Jr. ; Hien, N.C. ; et al.
Phys.Rev.D 5 (1972) 1073-1096, 1972.
Inspire Record 67297 DOI 10.17182/hepdata.22467

Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Charged Mesons, Anti-protons and Protons on Protons at Incident Momenta of 20-{GeV}/$c$, 30-{GeV}/$c$ and 50-{GeV}/$c$ in the Momentum Transfer Range $0.5-{\rm GeV}/c^2 < -t < 8-{\rm GeV}/c^2$

The Annecy(LAPP)-CERN-Bohr Inst-Genoa-Oslo-London collaboration Asad, Z. ; Baglin, C. ; Bock, R. ; et al.
Nucl.Phys.B 255 (1985) 273-327, 1985.
Inspire Record 206292 DOI 10.17182/hepdata.33789

Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of π ± p, K ± p, p p and pp at incident momen ta of 20, 30 and 50 GeV/ c . The measurements cover the momentum transfer range 0.5 < | t | < 8 (GeV/ c ) 2 , corresponding to c.m. scattering angles between 10° and 50°. The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-| t | region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for p p two-body annihilation into π − π + and K − K + at 30 and 50 GeV/ c , obtained in parallel with the elastic p p data, are also presented.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

ELASTIC SCATTERING AND OMEGA MESON PRODUCTION NEAR THE THRESHOLD OF PI- P ---> OMEGA N

Karami, H. ; Carr, J. ; Debenham, N.C. ; et al.
Nucl.Phys.B 154 (1979) 503-518, 1979.
Inspire Record 146573 DOI 10.17182/hepdata.34745

Measurements are reported of the differential cross section for the reaction π − +p→ ω +n from threshold to a final-state c.m. momentum P ∗ of 200 MeV /c . The previously reported fall in total cross section σ/P ∗ below about 100 MeV/ c is again seen. The differential cross section remains close to isotropic over the entire range. A paralle experiment on the variation in the elastic differential cross section across the threshold shows evidence of this threshold. The elastic data cover a range of incident moments from 1010 to 1180 MeV/ c in steps of 5 MeV/ c .

1 data table match query

No description provided.


Backward pi- p Reactions Between 0.6-GeV/c and 1-GeV/c

Debenham, N.C. ; Binnie, D.M. ; Camilleri, L. ; et al.
Phys.Rev.D 12 (1975) 2545-2556, 1975.
Inspire Record 104820 DOI 10.17182/hepdata.24845

Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.

1 data table match query

No description provided.


pi++p Interactions at 646 MeV

Oliver, John D. ; Nadelhaft, I. ; Yodh, G.B. ;
Phys.Rev. 147 (1966) 932-938, 1966.
Inspire Record 944954 DOI 10.17182/hepdata.26654

A 14-in. liquid-hydrogen-filled bubble chamber in a 17.5-kG magnetic field was exposed to a beam of negative pions produced by the Cosmotron at Brookhaven National Laboratory. About 26 000 pictures were taken and examined for the following final states: (1) elastic scattering (π−p); (2) π+ production (π−π+n); (3) π0 production (π−π0p); (4) neutrals. Values for the cross sections for these processes are σ(elastic)=17.56±0.43 mb, σ(π+)=7.14±0.23 mb, σ(π0)=4.65±0.17 mb. The elastic-scattering angular dependence in the c.m. system is fitted by a power-series expansion in cosθ and gives the following coefficients: a0=0.27±0.02, a1=1.48±0.11, a2=3.86±0.22, a3=−0.29±0.53, a4=−0.65±0.28, a5=1.69±0.52 (units: mb/sr). Cross sections for multiple-pion production were also measured: σ(π−π+π0n)=0.33±0.04 mb, σ(π−π+π−p)=0.08±0.02 mb. The total neutral cross section was σ(neutrals)=11.78±0.43 mb; the total charged events cross section was σ(charged)=29.76±0.69 mb; and the total cross section was σ(total)=41.54±0.82 mb. For single-pion production events, two-body mass distributions and angular distributions were compared with the predictions of the Olsson-Yodh isobar model.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////STATISTICAL YIELD DOMINATES).


Pion production in $\pi^-$ - $p$ interactions at energies 790, 830, and 870 {MeV}

Cason, N.M. ; Derado, I. ; Lamsa, J.W. ; et al.
Phys.Rev. 150 (1966) 1134-1140, 1966.
Inspire Record 50370 DOI 10.17182/hepdata.26587

Single-pion production has been studied in the reactions π−p→π−π+n and π−p→π−π0p at 790, 830, and 870 MeV. A total of 4193 events in these two channels, divided approximately equally between the three energies, have been identified. The most interesting feature of the data is the tendency for events to concentrate at high values of mππ and low values of four-momentum transfer. These effects are discussed in terms of conventional isobar models and a model involving two-pion exchange. Partial cross sections for the reactions studied are reported for each energy.

1 data table match query

No description provided.


K- p Reactions from 0.96-GeV/c to 1.355-GeV/c Involving Two-Body Final States

The Rutherford-London collaboration Conforto, B. ; Gopal, G.P. ; Kalmus, G.E. ; et al.
Nucl.Phys.B 105 (1976) 189-221, 1976.
Inspire Record 2769 DOI 10.17182/hepdata.8717

Data are presented from a high statistics bubble chamber experiment to study K − p interactions in the c.m. energy range 1775 to 1957 MeV. For the reactions K − p → K − p, K − p → K 0 n , K − p → Λπ 0 and K − p → Σ ± π ∓ channel cross sections, differential cross sections and, where appropriate, polarisation distributions have been obtained. The channel cross sections for K − p → Σ 0 π 0 are presented. In general the results are in agreement with those previously published although a significant discrepancy has been found in the Σ ± π ∓ cross sections at the lower energies. New measurements of the Σ ± lifetimes have also been obtained ( τ Σ − = 1.49 ± 0.03 × 10 −10 sec, τ Σ + = 0.807 ± 0.013 × 10 −10 sec).

3 data tables match query

No description provided.

THE FORWARD DIFFERENTIAL CROSS SECTION IS THE EXTRAPOLATED VALUE OF THE LEGENDRE POLYNOMIAL FIT.

No description provided.


New High Statistics Data on $K^- p \to$ Two-body Final States Over the Center-of-mass Energy Range 1720-{MeV} to 1796-{MeV}

Cameron, W. ; Franek, B. ; Gopal, G.P. ; et al.
Nucl.Phys.B 193 (1981) 21-52, 1981.
Inspire Record 156542 DOI 10.17182/hepdata.2930

Data are presented from a high statistics bubble chamber experiment to K − p interactions over the c.m. energy range 1720 to 1796 MeV. Channel cross sections, differential cross sections and, where appropriate, polarisation distributions have been obtained for the final states K − p , K 0 n , π 0 Λ and π ± Σ ∓ . These data are compared with those from previously published experiments and with the predictions from the RL-IC 77 partial-wave amplitudes for each of these channels.

4 data tables match query

No description provided.

No description provided.

EXTRAPOLATED FORWARD AND BACKWARD DIFFERENTIAL CROSS SECTIONS.

More…